3 research outputs found

    Magnetic field draping around clumpy high-velocity clouds in galactic halo

    Get PDF
    Throughout the passage within the Galactic halo, high-velocity clouds (HVCs) sweep up ambient magnetic fields and form stretched and draped configurations of magnetic fields around them. Many earlier numerical studies adopt spherically symmetric uniform-density clouds as initial conditions for simplicity. However, observations demonstrate that HVCs are clumpy and turbulent. In this paper, we perform 3D magnetohydrodynamic simulations to study the evolution of clouds with initial density distributions described by power-law spatial power spectra. We systematically study the role of (i) the initial density structure, (ii) halo magnetic fields, and (iii) radiative cooling efficiency upon infalling HVCs. We find that (i) the clouds' density structure regulates mixing and mass growth. Uniform clouds grow from the onset of the simulations while clumpy clouds initially lose gas and then grow at later times. Along the same lines, the growth curve of clumpy clouds depends on the slope of the initial density power spectra. (ii) Magnetic fields suppress hydrodynamic instabilities and the growth of small-scale structures. As a result, magnetized clouds develop long filaments extended along the streaming direction whereas non-magnetized clouds are fragmented into many small clumps. (iii) Efficient cooling keeps the main cloud body more compact and produces decelerated dense clumps condensed from the halo gas. This work potentially helps us understand and predict the observed properties of HVCs such as the detectability of magnetized clouds, the presence of decelerated HI structures associated with HVC complexes and small-scale features, and a possible link between the origin and the fate of HVCs.Comment: 21 pages, 13 figures, Accepted to MNRA

    YZiCS: Unveiling the Quenching History of Cluster Galaxies Using Phase-space Analysis

    Get PDF
    We used the time since infall (TSI) of galaxies, obtained from the Yonsei Zoom-in Cluster Simulation, and the star formation rate (SFR) from the Sloan Digital Sky Survey Data Release 10 to study how quickly the star formation of disk galaxies is quenched in cluster environments. We first confirm that both simulated and observed galaxies are consistently distributed in phase space. We then hypothesize that the TSI and SFR are causally connected; thus, both the TSI and SFR of galaxies at each position of phase space can be associated through abundance matching. Using a flexible model, we derive the star formation history (SFH) of cluster galaxies that best reproduces the relationship between the TSI and SFR at z ~ 0.08. According to this SFH, we find that galaxies with M * > 109.5 M ⊙ generally follow the so-called "delayed-then-rapid" quenching pattern. Our main results are as follows: (i) part of the quenching takes place outside clusters through mass quenching and preprocessing. The e-folding timescale of this "ex situ quenching phase" is roughly 3 Gyr with a strong inverse mass dependence. (ii) The pace of quenching is maintained roughly for 2 Gyr ("delay time") during the first crossing time into the cluster. During the delay time, quenching remains gentle, probably because gas loss happens primarily on hot and neutral gases. (iii) Quenching becomes more dramatic (e-folding timescale of roughly 1 Gyr) after delay time, probably because ram pressure stripping is strongest near the cluster center. Counterintuitively, more massive galaxies show shorter quenching timescales mainly because they enter their clusters with lower gas fractions due to ex situ quenching

    Sampling the Faraday rotation sky of TNG50: Imprint of the magnetised circumgalactic medium around Milky Way-like galaxies

    Full text link
    Faraday rotation measure (RM) is arguably the most practical observational tracer of magnetic fields in the diffuse circumgalactic medium (CGM). We sample synthetic Faraday rotation skies of Milky Way-like galaxies in TNG50 of the IllustrisTNG project by placing an observer inside the galaxies at a solar circle-like position. Our synthetic RM grids emulate specifications of current and upcoming surveys; the NRAO VLA Sky Survey (NVSS), the Polarisation Sky Survey of the Universe's Magnetism (POSSUM), and a future Square Kilometre Array (SKA1-mid) polarisation survey. It has been suggested that magnetic fields regulate the survival of high-velocity clouds. However, there is only a small number of observational detections of magnetised clouds thus far. In the first part of the paper, we test conditions for the detection of magnetised circumgalactic clouds. Based on the synthetic RM samplings of clouds in the simulations, we predict upcoming polarimetric surveys will open opportunities for the detection of even low-mass and distant clouds. In the second part of the paper, we investigate the imprint of the CGM in the all-sky RM distribution. We test whether the RM variation produced by the CGM is correlated with global galaxy properties, such as distance to a satellite, specific star formation rate, neutral hydrogen covering fraction, and accretion rate to the supermassive black hole. We argue that the observed fluctuation in the RM measurements on scales less than 1 degree, which has been considered an indication of intergalactic magnetic fields, might in fact incorporate a significant contribution of the Milky Way CGM.Comment: 18 pages, 11 figures, Accepted to MNRA
    corecore