294 research outputs found

    RaPlace: Place Recognition for Imaging Radar using Radon Transform and Mutable Threshold

    Full text link
    Due to the robustness in sensing, radar has been highlighted, overcoming harsh weather conditions such as fog and heavy snow. In this paper, we present a novel radar-only place recognition that measures the similarity score by utilizing Radon-transformed sinogram images and cross-correlation in frequency domain. Doing so achieves rigid transform invariance during place recognition, while ignoring the effects of radar multipath and ring noises. In addition, we compute the radar similarity distance using mutable threshold to mitigate variability of the similarity score, and reduce the time complexity of processing a copious radar data with hierarchical retrieval. We demonstrate the matching performance for both intra-session loop-closure detection and global place recognition using a publicly available imaging radar datasets. We verify reliable performance compared to existing stable radar place recognition method. Furthermore, codes for the proposed imaging radar place recognition is released for community

    Differentially Private Multivariate Statistics with an Application to Contingency Table Analysis

    Full text link
    Differential privacy (DP) has become a rigorous central concept in privacy protection for the past decade. Among various notions of DP, ff-DP is an easily interpretable and informative concept that tightly captures privacy level by comparing trade-off functions obtained from the hypothetical test of how well the mechanism recognizes individual information in the dataset. We adopt the Gaussian differential privacy (GDP), a canonical parametric family of ff-DP. The Gaussian mechanism is a natural and fundamental mechanism that tightly achieves GDP. However, the ordinary multivariate Gaussian mechanism is not optimal with respect to statistical utility. To improve the utility, we develop the rank-deficient and James-Stein Gaussian mechanisms for releasing private multivariate statistics based on the geometry of multivariate Gaussian distribution. We show that our proposals satisfy GDP and dominate the ordinary Gaussian mechanism with respect to L2L_2-cost. We also show that the Laplace mechanism, a prime mechanism in ε\varepsilon-DP framework, is sub-optimal than Gaussian-type mechanisms under the framework of GDP. For a fair comparison, we calibrate the Laplace mechanism to the global sensitivity of the statistic with the exact approach to the trade-off function. We also develop the optimal parameter for the Laplace mechanism when applied to contingency tables. Indeed, we show that the Gaussian-type mechanisms dominate the Laplace mechanism in contingency table analysis. In addition, we apply our findings to propose differentially private χ2\chi^2-tests on contingency tables. Numerical results demonstrate that differentially private parametric bootstrap tests control the type I error rates and show higher power than other natural competitors

    TRansPose: Large-Scale Multispectral Dataset for Transparent Object

    Full text link
    Transparent objects are encountered frequently in our daily lives, yet recognizing them poses challenges for conventional vision sensors due to their unique material properties, not being well perceived from RGB or depth cameras. Overcoming this limitation, thermal infrared cameras have emerged as a solution, offering improved visibility and shape information for transparent objects. In this paper, we present TRansPose, the first large-scale multispectral dataset that combines stereo RGB-D, thermal infrared (TIR) images, and object poses to promote transparent object research. The dataset includes 99 transparent objects, encompassing 43 household items, 27 recyclable trashes, 29 chemical laboratory equivalents, and 12 non-transparent objects. It comprises a vast collection of 333,819 images and 4,000,056 annotations, providing instance-level segmentation masks, ground-truth poses, and completed depth information. The data was acquired using a FLIR A65 thermal infrared (TIR) camera, two Intel RealSense L515 RGB-D cameras, and a Franka Emika Panda robot manipulator. Spanning 87 sequences, TRansPose covers various challenging real-life scenarios, including objects filled with water, diverse lighting conditions, heavy clutter, non-transparent or translucent containers, objects in plastic bags, and multi-stacked objects. TRansPose dataset can be accessed from the following link: https://sites.google.com/view/transpose-datasetComment: Under revie

    HeLiPR: Heterogeneous LiDAR Dataset for inter-LiDAR Place Recognition under Spatial and Temporal Variations

    Full text link
    Place recognition is crucial for robotic localization and loop closure in simultaneous localization and mapping (SLAM). Recently, LiDARs have gained popularity due to their robust sensing capability and measurement consistency, even in the illumination-variant environment, offering an advantage over traditional imaging sensors. Spinning LiDARs are widely accepted among many types, while non-repetitive scanning patterns have recently been utilized in robotic applications. Beyond the range measurements, some LiDARs offer additional measurements, such as reflectivity, Near Infrared (NIR), and velocity (e.g., FMCW LiDARs). Despite these advancements, a noticeable dearth of datasets comprehensively reflects the broad spectrum of LiDAR configurations optimized for place recognition. To tackle this issue, our paper proposes the HeLiPR dataset, curated especially for place recognition with heterogeneous LiDAR systems, embodying spatial-temporal variations. To the best of our knowledge, the HeLiPR dataset is the first heterogeneous LiDAR dataset designed to support inter-LiDAR place recognition with both non-repetitive and spinning LiDARs, accommodating different field of view (FOV) and varying numbers of rays. Encompassing the distinct LiDAR configurations, it captures varied environments ranging from urban cityscapes to high-dynamic freeways over a month, designed to enhance the adaptability and robustness of place recognition across diverse scenarios. Notably, the HeLiPR dataset also includes trajectories that parallel sequences from MulRan, underscoring its utility for research in heterogeneous LiDAR place recognition and long-term studies. The dataset is accessible at https: //sites.google.com/view/heliprdataset.Comment: 9 pages, 9 figures, 5 table

    Topological Directional Coupler

    Full text link
    Interferometers and beam splitters are fundamental building blocks for photonic neuromorphic and quantum computing machinery. In waveguide-based photonic integrated circuits, beam-splitting is achieved with directional couplers that rely on transition regions where the waveguides are adiabatically bent to suppress back-reflection. We present a novel, compact approach to introducing guided mode coupling. By leveraging multimodal domain walls between microwave topological photonic crystals, we use the photonic-spin-conservation to suppress back-reflection while relaxing the topological protection of the valley degree of freedom to implement tunable beam splitting. Rapid advancements in chip-scale topological photonics suggest that the proposed simultaneous utilization of multiple topological degrees of freedom could benefit the development of novel photonic computing platforms
    • …
    corecore