3,983 research outputs found
Use of Adjacent Knot Data in Predicting Bending Strength of Dimension Lumber by X-Ray
In a previous study, the knot depth ratio (KDR) evaluation method was proposed to quantify the area of knots in a cross-section. That study reported that bending strength can be predicted by KDR analysis. However, the KDR model did not take into consideration the additional strength reduction caused by adjacent knots. It was found that the prediction of lumber strength was improved when adjacent knots were taken into consideration. Analysis using the KDRA (KDR adding knots) model revealed that the optimum cross-sectional interval, an input variable, is directly affected by knot size parallel to lumber length (KSPLL). KSPLL depends on the sawing method and log characteristics, and for species containing large knots, the cross-sectional interval is likely to be extremely wide. This can cause several adjacent small knots to be excluded from the analysis, requiring modification of the KDRA model algorithm. This modification resulted in improvement in the precision of the strength prediction, although the input variable of the cross-sectional interval was not used. The R2 values obtained using this method were 0.60 and 0.56 for Japanese larch and red pine, respectively
Electroactive Artificial Muscles Based on Functionally Antagonistic Core–Shell Polymer Electrolyte Derived from PS-b-PSS Block Copolymer
Electroactive ionic soft actuators, a type of artificial muscles containing a polymer electrolyte membrane sandwiched between two electrodes, have been intensively investigated owing to their potential applications to bioinspired soft robotics, wearable electronics, and active biomedical devices. However, the design and synthesis of an efficient polymer electrolyte suitable for ion migration have been major challenges in developing high-performance ionic soft actuators. Herein, a highly bendable ionic soft actuator based on an unprecedented block copolymer is reported, i.e., polystyrene-b-poly(1-ethyl-3-methylimidazolium-4-styrenesulfonate) (PS-b-PSS-EMIm), with a functionally antagonistic core–shell architecture that is specifically designed as an ionic exchangeable polymer electrolyte. The corresponding actuator shows exceptionally good actuation performance, with a high displacement of 8.22 mm at an ultralow voltage of 0.5 V, a fast rise time of 5 s, and excellent durability over 14 000 cycles. It is envisaged that the development of this high-performance ionic soft actuator could contribute to the progress toward the realization of the aforementioned applications. Furthermore, the procedure described herein can also be applied for developing novel polymer electrolytes related to solid-state lithium batteries and fuel cells
Development of a Method to Predict the Bending Strength of Lumber Without Regard to Species Using X-Ray Images
Several models have been developed for predicting bending strength of lumber using X-rays, but most require species-specific classifications. However, the classification is very difficult because logs or cants can arrive without leaves or bark. This study was carried out to develop an alternative bending strength prediction model that does not lose precision when the species is unknown. The study proposes an Equivalent Density Model (EDM), in which a cross-section is quantified as equivalent density. Because the relationship between density and strength of small clear specimens is not affected by species, the EDM was expected to correlate to strength regardless of species. This model predicted the modulus of rupture in two species with R2 = 0.73, although the two were mixed. Therefore, it may be possible to predict bending strength using X-rays without classifying lumber by species
Betacellulin-Induced Beta Cell Proliferation and Regeneration Is Mediated by Activation of ErbB-1 and ErbB-2 Receptors
BACKGROUND: Betacellulin (BTC), a member of the epidermal growth factor family, is known to play an important role in regulating growth and differentiation of pancreatic beta cells. Growth-promoting actions of BTC are mediated by epidermal growth factor receptors (ErbBs), namely ErbB-1, ErbB-2, ErbB-3 and ErbB-4; however, the exact mechanism for beta cell proliferation has not been elucidated. Therefore, we investigated which ErbBs are involved and some molecular mechanisms by which BTC regulates beta cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: The expression of ErbB-1, ErbB-2, ErbB-3, and ErbB-4 mRNA was detected by RT-PCR in both a beta cell line (MIN-6 cells) and C57BL/6 mouse islets. Immunoprecipitation and western blotting analysis showed that BTC treatment of MIN-6 cells induced phosphorylation of only ErbB-1 and ErbB-2 among the four EGF receptors. BTC treatment resulted in DNA synthetic activity, cell cycle progression, and bromodeoxyuridine (BrdU)-positive staining. The proliferative effect was blocked by treatment with AG1478 or AG825, specific tyrosine kinase inhibitors of ErbB-1 and ErbB-2, respectively. BTC treatment increased mRNA and protein levels of insulin receptor substrate-2 (IRS-2), and this was blocked by the ErbB-1 and ErbB-2 inhibitors. Inhibition of IRS-2 by siRNA blocked cell cycle progression induced by BTC treatment. Streptozotocin-induced diabetic mice injected with a recombinant adenovirus expressing BTC and treated with AG1478 or AG825 showed reduced islet size, reduced numbers of BrdU-positive cells in the islets, and did not attain BTC-mediated remission of diabetes. CONCLUSIONS/SIGNIFICANCE: These results suggest that BTC exerts proliferative activity on beta cells through the activation of ErbB-1 and ErbB-2 receptors, which may increase IRS-2 expression, contributing to the regeneration of beta cells
miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol
Background: It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods: Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results: We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions: Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system.This work was supported an Eco-Technopia 21 project grant from the Ministry of Environment (Development of Decision Method of Chromosomal Abnormality in Reproductive System by Toxic Substances at the Korea Institute of Toxicology)
A Brand Loyalty Model Utilitizing Team Identification and Customer Satisfaction in the Licensed Sports Product Industry
The purpose of this study was to investigate the relationship among the attitudinal brand loyalty variables (i.e., cognitive, affective, and conative components), team identification, and customer satisfaction by developing a structural equation model, based on Oliver's (1997) attitudinal brand loyalty model. The results of this study confirmed the study of brand loyalty stages by Oliver (1997) involving development of a brand loyalty process. Results supported the finding that consumers' strong beliefs about brand quality have increased the degree of "liking". In turn, results indicate a positive intention or commitment to repurchase a particular item. Therefore, this study emphasizes the importance of measuring attitudinal brand loyalty to identify attitudinal brand loyal customers and better understand their repurchasing intentions in the sports licensed product industry. Furthermore, this study showed the significant mediating effect of cognitive and affective brand loyalty in the relationship between customer satisfaction and conative brand loyalty
Altered resting-state connectivity in subjects at ultra-high risk for psychosis: an fMRI study
<p>Abstract</p> <p>Background</p> <p>Individuals at ultra-high risk (UHR) for psychosis have self-disturbances and deficits in social cognition and functioning. Midline default network areas, including the medial prefrontal cortex and posterior cingulate cortex, are implicated in self-referential and social cognitive tasks. Thus, the neural substrates within the default mode network (DMN) have the potential to mediate self-referential and social cognitive information processing in UHR subjects.</p> <p>Methods</p> <p>This study utilized functional magnetic resonance imaging (fMRI) to investigate resting-state DMN and task-related network (TRN) functional connectivity in 19 UHR subjects and 20 matched healthy controls. The bilateral posterior cingulate cortex was selected as a seed region, and the intrinsic organization for all subjects was reconstructed on the basis of fMRI time series correlation.</p> <p>Results</p> <p>Default mode areas included the posterior/anterior cingulate cortices, the medial prefrontal cortex, the lateral parietal cortex, and the inferior temporal region. Task-related network areas included the dorsolateral prefrontal cortex, supplementary motor area, the inferior parietal lobule, and middle temporal cortex. Compared to healthy controls, UHR subjects exhibit hyperconnectivity within the default network regions and reduced anti-correlations (or negative correlations nearer to zero) between the posterior cingulate cortex and task-related areas.</p> <p>Conclusions</p> <p>These findings suggest that abnormal resting-state network activity may be related with the clinical features of UHR subjects. Neurodevelopmental and anatomical alterations of cortical midline structure might underlie altered intrinsic networks in UHR subjects.</p
- …