545 research outputs found

    All-optical label swapping techniques for data packets beyond 160 Gb/s

    Get PDF
    We present two paradigms to realize all-optical packet switches, and report experimental results showing the routing operation of the 160 Gb/s packets and beyond. Photonic integrated sub-systems required to implement the packet switch are reviewed. © 2009 IEEE

    All-optical label swapping of in-band addresses and 160 Gbit/s data packets

    Get PDF
    A 1Ă—4 all-optical packet switch is presented, based on an optical label swapping technique that utilises a scalable label processor and a label rewriter with 'on the fly' operation. Experimental results show error-free packet switching with a data payload at 160Gbit/s. The label erasing and new label insertion operation introduces 0.5dB of power penalty. These results indicate a potential utilisation of the presented technique in a multi-hop packet switched network

    All-optical packet switch at data-rate beyond 160 Gb/s

    Get PDF
    Two different paradigms to realize a scalable all-optical packet switch with label swapping will be presented. All the functions required for switching the packets are based on all-optical signal processing without any electronic control. This allows very low latency and potential photonic integration of the systems. We report for both techniques experimental results showing the routing operation of the 160 Gb/s packets and beyond. We will discuss and compare both techniques in term of devices and bit-rate scalability, latency, power consumption, power penalty performance and cascadability as key parameters for the realization of an all-optical packet switch. ©2009 IEEE

    Integrated InP membrane light sources for analog CMOS photonic transmitters

    Get PDF
    InP membrane disc lasers have been considered as light sources for off chip data communication for logic microprocessors or for all optical logic devices such as gates and flip-flops. However, another family of CMOS devices can benefit greatly from integration of on chip light sources, mixed-signal and analog CMOS. In this paper we discuss recent results in the application of disc lasers for analog signal transmission such as radio over fiber. Large analog modulation bandwidth is demonstrated, and transmission of 64 and 256 QAM signals on a 5GHz RF carrier is successfully demonstrated with low EVM performance penalt

    Magnetic field and pressure effects on charge density wave, superconducting, and magnetic states in Lu5_5Ir4_4Si10_{10} and Er5_5Ir4_4Si10_{10}

    Full text link
    We have studied the charge-density-wave (CDW) state for the superconducting Lu5_5Ir4_4Si10_{10} and the antiferromagnetic Er5_5Ir4_4Si10_{10} as variables of temperature, magnetic field, and hydrostatic pressure. For Lu5_5Ir4_4Si10_{10}, the application of pressure strongly suppresses the CDW phase but weakly enhances the superconducting phase. For Er5_5Ir4_4Si10_{10}, the incommensurate CDW state is pressure independent and the commensurate CDW state strongly depends on the pressure, whereas the antiferromagnetic ordering is slightly depressed by applying pressure. In addition, Er5_5Ir4_4Si10_{10} shows negative magnetoresistance at low temperatures, compared with the positive magnetoresistance of Lu5_5Ir4_4Si10_{10}.Comment: 12 pages, including 6 figure

    Transition from fractal to non-fractal scalings in growing scale-free networks

    Full text link
    Real networks can be classified into two categories: fractal networks and non-fractal networks. Here we introduce a unifying model for the two types of networks. Our model network is governed by a parameter qq. We obtain the topological properties of the network including the degree distribution, average path length, diameter, fractal dimensions, and betweenness centrality distribution, which are controlled by parameter qq. Interestingly, we show that by adjusting qq, the networks undergo a transition from fractal to non-fractal scalings, and exhibit a crossover from `large' to small worlds at the same time. Our research may shed some light on understanding the evolution and relationships of fractal and non-fractal networks.Comment: 7 pages, 3 figures, definitive version accepted for publication in EPJ

    Reversible magnetization of MgB2 single crystals with a two-gap nature

    Full text link
    We present reversible magnetization measurements on MgB2 single crystals in magnetic fields up to 2.5 T applied parallel to the crystal's c-axis. This magnetization is analyzed in terms of the Hao-Clem model, and various superconducting parameters, such as the critical fields [Hc(0) and Hc2(0)], the characteristic lengths [xi(0) and lambda(0)], and the Ginzburg-Landau parameter, kappa, are derived. The temperature dependence of the magnetic penetration depth, lambda(T), obtained from the Hao-Clem analysis could not be explained by theories assuming a single gap. Our data are well described by using a two-gap model.Comment: 20 pages, 1 table, 4 figures, will be published in Phys. Rev.

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
    • …
    corecore