4 research outputs found

    Recovery of remanent polarization of poly(vinylidene fluoride-co-trifluoroethylene) thin film after high temperature annealing using topographically nanostructured aluminium bottom electrode

    Get PDF
    Facile recovery of ferroelectric polarization after high temperature annealing was observed in a poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin film on an etched Al bottom electrode which has a topographically nanostructured surface with hexagonal registry of the recessed hemispherical bowls of approximately 100 nm diameter. Fairly large remanent polarization of 10 mu C/cm(2) was obtained after annealing up to 185 degrees C with the etched Al electrode, while the polarization rapidly dropped near the melting temperature of P(VDF-TrFE) (similar to 150 degrees C) with a flat Al electrode. The topographic electrode is found to facilitate the reorganization of P(VDF-TrFE) crystal under electric field. (C) 2007 American Institute of Physicsopen142

    Acupuncture Stimulation Alleviates Corticosterone-Induced Impairments of Spatial Memory and Cholinergic Neurons in Rats

    Get PDF
    The purpose of this study was to examine whether acupuncture improves spatial cognitive impairment induced by repeated corticosterone (CORT) administration in rats. The effect of acupuncture on the acetylcholinergic system was also investigated in the hippocampus. Male rats were subcutaneously injected with CORT (5 mg/kg) once daily for 21 days. Acupuncture stimulation was performed at the HT7 (Sinmun) acupoint for 5 min before CORT injection. HT7 acupoint is located at the end of transverse crease of ulnar wrist of forepaw. In CORT-treated rats, reduced spatial cognitive function was associated with significant increases in plasma CORT level (+36%) and hippocampal CORT level (+204%) compared with saline-treated rats. Acupuncture stimulation improved the escape latency for finding the platform in the Morris water maze. Consistently, the acupuncture significantly alleviated memory-associated decreases in cholinergic immunoreactivity and mRNA expression of BDNF and CREB in the hippocampus. These findings demonstrate that stimulation of HT7 acupoint produced significant neuroprotective activity against the neuronal impairment and memory dysfunction

    Extension of matRad with a modified microdosimetric kinetic model for carbon ion treatment planning: Comparison with Monte Carlo calculation

    No full text
    BackgroundTreatment planning is essential for in silico particle therapy studies. matRad is an open-source research treatment planning system (TPS) based on the local effect model, which is a type of relative biological effectiveness (RBE) model. PurposeThis study aims to implement a microdosimetric kinetic model (MKM) in matRad and develop an automation algorithm for Monte Carlo (MC) dose recalculation using the TOPAS code. In addition, we provide the developed MKM extension as open-source tool for users. MethodsCarbon beam data were generated using TOPAS MC pencil beam irradiation. We parameterized the TOPAS MC beam data with a double-Gaussian fit and modeled the integral depth doses and lateral spot profiles in the range of 100-430 MeV/u. To implement the MKM, the specific energy data table for Z = 1-6 and integrated depth-specific energy data were acquired based on the Kiefer-Chatterjee track structure and TOPAS MC simulation, respectively. Generic data were integrated into matRad, and treatment planning was performed based on these data. The optimized plan parameters were automatically converted into MC simulation input. Finally, the matRad TPS and TOPAS MC simulations were compared using the RBE-weighted dose calculation results. A comparison was made for three geometries: homogeneous water phantom, inhomogeneous phantom, and patient. ResultsThe RBE-weighted dose (D-RBE) distribution agreed with TOPAS MC within 1.8% for all target sizes for the homogeneous phantom. For the inhomogeneous phantom, the relative difference in the range of 80% of the prescription dose in the distal fall-off region (R80) between the matRad TPS and TOPAS MC was 0.6% (1.1 mm). D-RBE between the TPS and the MC was within 4.0%. In the patient case, the difference in the dose-volume histogram parameters for the target volume between the TPS and the MC was less than 2.7%. The relative difference in R80 was 0.7% (1.2 mm). ConclusionsThe MKM was successfully implemented in matRad TPS, and the RBE-weighted dose was comparable to that of TOPAS MC. The MKM-implemented matRad was released as an open-source tool. Further investigations with MC simulations can be conducted using this tool, providing a good option for carbon ion research
    corecore