9 research outputs found

    A Novel Synthetic Compound (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile Inhibits TNF alpha-Induced MMP9 Expression via EGR-1 Downregulation in MDA-MB-231 Human Breast Cancer Cells

    Get PDF
    Breast cancer is a common malignancy among women worldwide. Gelatinases such as matrix metallopeptidase 2 (MMP2) and MMP9 play crucial roles in cancer cell migration, invasion, and metastasis. To develop a novel platform compound, we synthesized a flavonoid derivative, (E)-5-((4-oxo-4H-chromen-3-yl)methyleneamino)-1-phenyl-1H-pyrazole-4-carbonitrile (named DK4023) and characterized its inhibitory effects on the motility andMMP2andMMP9expression of highly metastatic MDA-MB-231 breast cancer cells. We found that DK4023 inhibited tumor necrosis factor alpha (TNF alpha)-induced motility and F-actin formation of MDA-MB-231 cells. DK4023 also suppressed the TNF alpha-induced mRNA expression ofMMP9through the downregulation of the TNF alpha-extracellular signal-regulated kinase (ERK)/early growth response 1 (EGR-1) signaling axis. These results suggest that DK4023 could serve as a potential platform compound for the development of novel chemopreventive/chemotherapeutic agents against invasive breast cancer

    WNT11 is a direct target of early growth response protein 1

    Get PDF
    WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNF alpha) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNF alpha activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNF alpha-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNF alpha-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNF alpha-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNF alpha stimulation in breast cancer cells

    EGR1 Regulation of Vasculogenic Mimicry in the MDA-MB-231 Triple-Negative Breast Cancer Cell Line through the Upregulation of KLF4 Expression

    No full text
    Vasculogenic mimicry (VM) is an intriguing phenomenon observed in tumor masses, in which cancer cells organize themselves into capillary-like channels that closely resemble the structure and function of blood vessels. Although VM is believed to contribute to alternative tumor vascularization, the detailed regulatory mechanisms controlling these cellular processes remain poorly understood. Our study aimed to investigate the role of Early Growth Response 1 (EGR1) in regulating VM in aggressive cancer cells, specifically MDA-MB-231 triple-negative breast cancer cells. Our study revealed that EGR1 promotes the formation of capillary-like tubes by MDA-MB-231 cells in a 3-dimensional Matrigel matrix. EGR1 was observed to upregulate Kruppel-like factor 4 (KLF4) expression, which regulates the formation of the capillary-like tube structure. Additionally, our findings highlight the involvement of the ERK1/2 and p38 mitogen-activated protein kinase pathways in mediating the expression of EGR1 and KLF4, underscoring their crucial role in VM in MDA-MB-231 cells. Understanding these regulatory mechanisms will provide valuable insights into potential therapeutic targets for preventing VM during the treatment of triple-negative breast cancer

    The Natural Janus Kinase Inhibitor Agerarin Downregulates Interleukin-4-Induced <i>PER2</i> Expression in HaCaT Keratinocytes

    No full text
    The circadian clock system is closely associated with inflammatory responses. Dysregulation of the circadian clock genes in the skin impairs the skin barrier function and affects the pathophysiology of atopic dermatitis. Interleukin 4 (IL-4) is a proinflammatory cytokine derived from T-helper type 2 cells; it plays a critical role in the pathogenesis of atopic dermatitis. Agerarin (6,7-dimethoxy-2,2-dimethyl-2H-chromene) is a natural JAK1/2/3 inhibitor isolated from Ageratum houstonianum that has a protective effect on the epidermal skin barrier. However, it remains unclear whether agerarin affects the circadian clock system. The aim of this study is to investigate the effect of agerarin on IL-4-induced PER2 gene expression in human keratinocytes through reverse transcription (RT)-PCR, quantitative real-time PCR (qPCR), immunoblotting, immunofluorescence microscopic analysis, and real-time bioluminescence analysis. We found that agerarin reduced IL-4-induced PER2 mRNA expression by suppressing the JAK-STAT3 pathway. In addition, real-time bioluminescence analysis in PER2:luc2p promoter-reporter cells revealed that agerarin restored the oscillatory rhythmicity of PER2 promoter activity altered by IL-4. These findings suggest that agerarin may be useful as a cosmeceutical agent against inflammatory skin conditions associated with disrupted circadian rhythms, such as atopic dermatitis

    Saikosaponin A and Saikosaponin C Reduce TNF-&alpha;-Induced TSLP Expression through Inhibition of MAPK-Mediated EGR1 Expression in HaCaT Keratinocytes

    No full text
    Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases worldwide, characterized by intense pruritus and eczematous lesions. Aberrant expression of thymic stromal lymphopoietin (TSLP) in keratinocytes is associated with the pathogenesis of AD and is considered a therapeutic target for the treatment of this disease. Saikosaponin A (SSA) and saikosaponin C (SSC), identified from Radix Bupleuri, exert anti-inflammatory effects. However, the topical effects of SSA and SSC on chronic inflammatory skin diseases are unclear. In this study, we investigated the effects of SSA and SSC on TSLP suppression in an AD-like inflammatory environment. We observed that SSA and SSC suppressed tumor necrosis factor-&alpha;-induced TSLP expression by downregulating the expression of the transcription factor early growth response 1 (EGR1) via inhibition of the extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, and p38 mitogen-activated protein kinase pathways. We also confirmed that topical application of SSA or SSC reduced AD-like skin lesions in BALB/c mice challenged with 2,4-dinitrochlorobenzene. Our findings suggest that suppression of EGR1-regulated TSLP expression in keratinocytes might be attributable to the anti-inflammatory effects of SSA and SSC in AD-like skin lesions

    Chrysoeriol Prevents TNFĪ±-Induced CYP19 Gene Expression via EGR-1 Downregulation in MCF7 Breast Cancer Cells

    No full text
    Estrogen overproduction is closely associated with the development of estrogen receptor-positive breast cancer. Aromatase, encoded by the cytochrome P450 19 (CYP19) gene, regulates estrogen biosynthesis. This study aimed to identify active flavones that inhibit CYP19 expression and to explore the underlying mechanisms. CYP19 expression was evaluated using reverse transcription PCR, quantitative real-time PCR, and immunoblot analysis. The role of transcription factor early growth response gene 1 (EGR-1) in CYP19 expression was assessed using the short-hairpin RNA (shRNA)-mediated knockdown of EGR-1 expression in estrogen receptor-positive MCF-7 breast cancer cells. We screened 39 flavonoids containing 26 flavones and 13 flavanones using the EGR1 promoter reporter activity assay and observed that chrysoeriol exerted the highest inhibitory activity on tumor necrosis factor alpha (TNF&alpha;)-induced EGR-1 expression. We further characterized and demonstrated that chrysoeriol inhibits TNF&alpha;-induced CYP19 expression through inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated EGR-1 expression. Chrysoeriol may be beneficial as a dietary supplement for the prevention of estrogen receptor-positive breast cancer, or as a chemotherapeutic adjuvant in the treatment of this condition

    Ī²-Caryophyllene Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis through the Downregulation of Mitogen-Activated Protein Kinase/EGR1/TSLP Signaling Axis

    No full text
    Atopic dermatitis (AD) is one of the most common inflammatory skin diseases accompanied by severe itching. Ī²-caryophyllene (BCP), which displays anti-inflammatory activity, is a natural agonist of cannabinoid receptor 2. However, the therapeutic effects of BCP on atopic dermatitis (AD) remain poorly understood. The current study aimed to evaluate the topical therapeutic efficacy of BCP in an AD-like mouse model. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that drives AD pathogenesis. This study also investigated the effect of BCP on the interleukin 4 (IL-4)-induced expression of TSLP in HaCaT keratinocytes. We found that the topical application of BCP alleviated AD-like skin inflammation and inhibited the infiltration of proinflammatory cells into skin lesions. Moreover, the topical application of BCP reduced EGR1 (Early Growth Response 1) and TSLP expression in AD-like skin lesions. We also found that BCP inhibited IL-4-induced TSLP expression by downregulating mitogen-activated protein kinase (MAPK)-mediated EGR1 expression in HaCaT keratinocytes. These findings demonstrate that BCP ameliorates DNCB-induced AD-like skin lesions through the downregulation of the MAPK/EGR1/TSLP signaling axis. BCP may be applicable for developing topical therapeutic agents for chronic skin inflammatory diseases, such as AD

    Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Docking Studies of a Novel Flavoneā€“Chalcone Hybrid Compound Demonstrating Anticancer Effects by Generating ROS through Glutathione Depletion

    No full text
    The flavoneā€“chalcone hybrid compound, (E)-6-bromo-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl)-4H-chromen-4-one (3), was synthesized and its three dimensional structure was identified by X-ray crystallography. The compound 3, C19H13BrO4, was crystallized in the triclinic space group P-1 with the following cell parameters: a = 8.2447(6) ƅ; b = 8.6032(6) ƅ; c = 11.7826(7) ƅ; Ī± = 92.456(2)Ā°; Ī² = 91.541(2)Ā°; Ī³ = 106.138(2)Ā°; V = 801.42(9) ƅ3 and Z = 2. In an asymmetric unit, two molecules are packed by a piā€“pi stacking interaction between two flavone rings that are 3.790 ƅ apart from each other. In the crystal, two hydrogen bonds form inversion dimers and these dimers are extended along the a axis by another hydrogen bond. Hirshfeld analysis revealed that the Hā€“H (34.3%), Oā€“H (19.2%) and Cā€“H (16.7%) intermolecular contacts are the major dominants, while the Cā€“O (6.7%) and Cā€“C (6.5%) are minor dominants. When HCT116 cells were treated with various concentrations of hybrid compound 3, reduced cell viability and induced apoptosis in HCT116 cells were observed in a dose-dependent manner. The treatment of HCT116 colon cancer cells with compound 3, decreased the intracellular glutathione (GSH) levels and generated a reactive oxygen species (ROS). In silico docking experiments between the compound 3 and glutathione S-transferase (GST) containing glutathione were performed to confirm whether the compound 3 binds to glutathione. Their binding energy ranged from āˆ’6.6 kcal/mol to āˆ’5.0 kcal/mol, and the sulfur of glutathione is very close to the Michael acceptor regions of the compound 3, so it is expected that they would easily react with each other. Compound 3 may be a promising novel anticancer agent by ROS generation through glutathione depletion

    Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Docking Studies of a Novel Flavone&ndash;Chalcone Hybrid Compound Demonstrating Anticancer Effects by Generating ROS through Glutathione Depletion

    No full text
    The flavone&ndash;chalcone hybrid compound, (E)-6-bromo-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl)-4H-chromen-4-one (3), was synthesized and its three dimensional structure was identified by X-ray crystallography. The compound 3, C19H13BrO4, was crystallized in the triclinic space group P-1 with the following cell parameters: a = 8.2447(6) &Aring;; b = 8.6032(6) &Aring;; c = 11.7826(7) &Aring;; &alpha; = 92.456(2)&deg;; &beta; = 91.541(2)&deg;; &gamma; = 106.138(2)&deg;; V = 801.42(9) &Aring;3 and Z = 2. In an asymmetric unit, two molecules are packed by a pi&ndash;pi stacking interaction between two flavone rings that are 3.790 &Aring; apart from each other. In the crystal, two hydrogen bonds form inversion dimers and these dimers are extended along the a axis by another hydrogen bond. Hirshfeld analysis revealed that the H&ndash;H (34.3%), O&ndash;H (19.2%) and C&ndash;H (16.7%) intermolecular contacts are the major dominants, while the C&ndash;O (6.7%) and C&ndash;C (6.5%) are minor dominants. When HCT116 cells were treated with various concentrations of hybrid compound 3, reduced cell viability and induced apoptosis in HCT116 cells were observed in a dose-dependent manner. The treatment of HCT116 colon cancer cells with compound 3, decreased the intracellular glutathione (GSH) levels and generated a reactive oxygen species (ROS). In silico docking experiments between the compound 3 and glutathione S-transferase (GST) containing glutathione were performed to confirm whether the compound 3 binds to glutathione. Their binding energy ranged from &minus;6.6 kcal/mol to &minus;5.0 kcal/mol, and the sulfur of glutathione is very close to the Michael acceptor regions of the compound 3, so it is expected that they would easily react with each other. Compound 3 may be a promising novel anticancer agent by ROS generation through glutathione depletion
    corecore