28 research outputs found

    Identification of potential biomarkers for diagnosis of pancreatic and biliary tract cancers by sequencing of serum microRNAs

    Get PDF
    Background Pancreatic and biliary tract cancer (PC and BTC, respectively) are difficult to diagnose because of their clinical characteristics; however, recent studies suggest that serum microRNAs (miRNAs) might be the key to developing more efficient diagnostic methods for these cancers. Methods We analysed the genome-wide expression of serum miRNAs in PC and BTC patients to identify novel biomarker candidates using high-throughput sequencing and experimentally validated miRNAs on clinical samples. Results Statistical and classification analysis of the serum miRNA-expression profiles of 55 patient samples showed distinguishable patterns between cancer patients and healthy controls; however, we were unable to distinguish the two cancers. We found that three of the highest performing miRNAs were capable of distinguishing cancer patients from controls, with an accuracy of 92.7%. Additionally, dysregulation of these three cancer-specific miRNAs was demonstrated in an independent sample group by quantitative reverse transcription polymerase chain reaction. Conclusions These results suggested three candidate serum miRNAs (mir-744-5p, mir-409-3p, and mir-128-3p) as potential biomarkers for PC and BTC diagnosis.This work was supported by the Post-Genome Technology Development Program. (No. 10040174; Multiple biomarker development through validation of useful markers generated by next-generation bio-data-based genome research) funded by the Ministry of Trade, Industry, and Energy (MOTIE, Korea). The funders had no role in study design, data collection, analysis and interpretation of data, or in the writing of the manuscript

    An experimental and theoretical study of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amides

    Get PDF
    The mechanism of the enantioselective deprotonation of cyclohexene oxide with isopinocampheyl-based chiral lithium amide was studied by quantum chemical calculations. The transition states of eight molecules were fully optimized at the ab initio HF/3-21G and density functional B3LYP/3-21G levels with Gaussian 98. The activation energies were calculated at the B3LYP/6-31+G(3df,2p)//B3LYP/3-21G level. We found the theoretical evaluation to be consistent with the experimental data. At the best case, an enantiomeric excess of up to 95% for (R)-2-scyclohexen-1-ol was achieved with (−)-N, N-diisopinocampheyl lithium amide

    Magnetic structures and turbulence in SN 1006 revealed with imaging X-ray polarimetry

    Full text link
    Young supernova remnants (SNRs) strongly modify surrounding magnetic fields, which in turn play an essential role in accelerating cosmic rays (CRs). X-ray polarization measurements probe magnetic field morphology and turbulence at the immediate acceleration site. We report the X-ray polarization distribution in the northeastern shell of SN1006 from a 1 Ms observation with the Imaging X-ray Polarimetry Explorer (IXPE). We found an average polarization degree of 22.4±3.5%22.4\pm 3.5\% and an average polarization angle of 45.4±4.5-45.4\pm 4.5^\circ (measured on the plane of the sky from north to east). The X-ray polarization angle distribution reveals that the magnetic fields immediately behind the shock in the northeastern shell of SN 1006 are nearly parallel to the shock normal or radially distributed, similar to that in the radio observations, and consistent with the quasi-parallel CR acceleration scenario. The X-ray emission is marginally more polarized than that in the radio band. The X-ray polarization degree of SN 1006 is much larger than that in Cas A and Tycho, together with the relatively tenuous and smooth ambient medium of the remnant, favoring that CR-induced instabilities set the turbulence in SN 1006 and CR acceleration is environment-dependent.Comment: 15 pages, 4 Figures, 2 Tables; accepted for publication in The Astrophysical Journa

    The Polarized Cosmic Hand: IXPE Observations of PSR B1509-58/MSH 15-52

    Full text link
    We describe IXPE polarization observations of the Pulsar Wind Nebula (PWN) MSH15-52, the `Cosmic Hand'. We find X-ray polarization across the PWN, with B field vectors generally aligned with filamentary X-ray structures. High significance polarization is seen in arcs surrounding the pulsar and toward the end of the `jet', with polarization degree PD>70%, thus approaching the maximum allowed synchrotron value. In contrast, the base of the jet has lower polarization, indicating a complex magnetic field at significant angle to the jet axis. We also detect significant polarization from PSR B1509-58 itself. Although only the central pulse-phase bin of the pulse has high individual significance, flanking bins provide lower significance detections and, in conjunction with the X-ray image and radio polarization, can be used to constrain rotating vector model solutions for the pulsar geometry.Comment: To appear in the Astrophysical Journa

    Aberrant Hedgehog ligands induce progressive pancreatic fibrosis by paracrine activation of myofibroblasts and ductular cells in transgenic zebrafish.

    Get PDF
    Hedgehog (Hh) signaling is frequently up-regulated in fibrogenic pancreatic diseases including chronic pancreatitis and pancreatic cancer. Although recent series suggest exclusive paracrine activation of stromal cells by Hh ligands from epithelial components, debates still exist on how Hh signaling works in pathologic conditions. To explore how Hh signaling affects the pancreas, we investigated transgenic phenotypes in zebrafish that over-express either Indian Hh or Sonic Hh along with green fluorescence protein (GFP) to enable real-time observation, or GFP alone as control, at the ptf1a domain. Transgenic embryos and zebrafish were serially followed for transgenic phenotypes, and investigated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), in situ hybridization, and immunohistochemistry. Over-expression of Ihh or Shh reveals virtually identical phenotypes. Hh induces morphologic changes in a developing pancreas without derangement in acinar differentiation. In older zebrafish, Hh induces progressive pancreatic fibrosis intermingled with proliferating ductular structures, which is accompanied by the destruction of the acinar structures. Both myofibroblasts and ductular are activated and proliferated by paracrine Hh signaling, showing restricted expression of Hh downstream components including Patched1 (Ptc1), Smoothened (Smo), and Gli1/2 in those Hh-responsive cells. Hh ligands induce matrix metalloproteinases (MMPs), especially MMP9 in all Hh-responsive cells, and transform growth factor-ß1 (TGFß1) only in ductular cells. Aberrant Hh over-expression, however, does not induce pancreatic tumors. On treatment with inhibitors, embryonic phenotypes are reversed by either cyclopamine or Hedgehog Primary Inhibitor-4 (HPI-4). Pancreatic fibrosis is only prevented by HPI-4. Our study provides strong evidence of Hh signaling which induces pancreatic fibrosis through paracrine activation of Hh-responsive cells in vivo. Induction of MMPs and TGFß1 by Hh signaling expands on the current understanding of how Hh signaling affects fibrosis and tumorigenesis. These transgenic models will be a valuable platform in exploring the mechanism of fibrogenic pancreatic diseases which are induced by Hh signaling activation

    Novel Gastric Cancer Stem Cell-Related Marker LINGO2 Is Associated with Cancer Cell Phenotype and Patient Outcome

    No full text
    The expression of leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) has been reported in Parkinson’s disease; however, its role in other diseases is unknown. Gastric cancer is the second leading cause of cancer death. Cancer stem cells (CSC) are a subpopulation of cancer cells that contribute to the initiation and invasion of cancer. We identified LINGO2 as a CSC-associated protein in gastric cancers both in vitro and in patient-derived tissues. We studied the effect of LINGO2 on cell motility, stemness, tumorigenicity, and angiogenic capacity using cells sorted based on LINGO2 expression and LINGO2-silenced cells. Tissue microarray analysis showed that LINGO2 expression was significantly elevated in advanced gastric cancers. The overall survival of patients expressing high LINGO2 was significantly shorter than that of patients with low LINGO2. Cells expressing high LINGO2 showed elevated cell motility, angiogenic capacity, and tumorigenicity, while LINGO2 silencing reversed these properties. Silencing LINGO2 reduced kinase B (AKT)/extracellular signal-regulated kinase (ERK)/ERK kinase (MEK) phosphorylation and decreased epithelial-mesenchymal transition (EMT)-associated markers—N-Cadherin and Vimentin and stemness-associated markers— POU class 5 homeobox 1 (OCT4) and Indian hedgehog (IHH), and markedly decreased the CD44+ population. These indicate the involvement of LINGO2 in gastric cancer initiation and progression by altering cell motility, stemness, and tumorigenicity, suggesting LINGO2 as a putative target for gastric cancer treatment

    Impaired Lymphocytes Development and Xenotransplantation of Gastrointestinal Tumor Cells in Prkdc-Null SCID Zebrafish Model

    Get PDF
    Severe combined immunodeficiency (SCID) mice have widely been used as hosts for human tumor cell xenograft study. This animal model, however, is labor intensive. As zebrafish is largely emerging as a promising model system for studying human diseases including cancer, developing efficient immunocompromised strains for tumor xenograft study are also demanded in zebrafish. Here, we have created the Prkdc-null SCID zebrafish model which provides the stable immune-deficient background required for xenotransplantation of tumor cell. In this study, the two transcription activator-like effector nucleases that specifically target the exon3 of the zebrafish Prkdc gene were used to induce a frame shift mutation, causing a complete knockout of the gene function. The SCID zebrafish showed susceptibility to spontaneous infection, a well-known phenotype found in the SCID mutation. Further characterization revealed that the SCID zebrafish contained no functional T and B lymphocytes which reflected the phenotypes identified in the mice SCID model. Intraperitoneal injection of human cancer cells into the adult SCID zebrafish clearly showed tumor cell growth forming into a solid mass. Our present data show the suitability of using the SCID zebrafish strain for xenotransplantation experiments, and in vivo monitoring of the tumor cell growth in the zebrafish demonstrates use of the animal model as a new platform of tumor xenograft study
    corecore