428 research outputs found

    Acori graminei rhizoma Ameliorated Ibotenic Acid-Induced Amnesia in Rats

    Get PDF
    In the present study, we investigated the effects of Acori graminei rhizoma (AGR) on learning and memory for the Morris water maze task and on the central cholinergic system of the rats with excitotoxic medial septum (MS) lesion. On the water maze test, the rats were trained to find a platform that was in a fixed position during 6 days and then they received a 60 s probe trial in which the platform was removed from the pool on the 7th day. Ibotenic lesioning of the MS impaired the performance on the maze test and it caused degeneration of choline acetyltransferase and acetylcholine esterase in the hippocampus, which are markers of the central cholinergic system. Daily administrations of AGR (100 mg kg−1, i.p.) for 21 consecutive days produced reversals of the ibotenic acid-induced deficit in learning and memory. These treatments also reduced the loss of cholinergic immunoreactivity in the hippocampus that was induced by ibotenic acid. These results demonstrated that AGR ameliorated learning and memory deficits through their effects on the central nervous system, and neuroprotection was partly evaluated through the effect of AGR on the cholinergic system. Our studies suggest that AGR can possibly be used as treatment for Alzheimer's disease

    Topoisomerase II is regulated by translationally controlled tumor protein for cell survival during organ growth in Drosophila.

    Get PDF
    Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development

    The ancient phosphatidylinositol 3-kinase signaling system is a master regulator of energy and carbon metabolism in algae

    Get PDF
    Algae undergo a complete metabolic transformation under stress by arresting cell growth, inducing autophagy and hyperaccumulating biofuel precursors such as triacylglycerols and starch. However, the regulatory mechanisms behind this stress-induced transformation are still unclear. Here, we use biochemical, mutational, and “omics” approaches to demonstrate that PI3K signaling mediates the homeostasis of energy molecules and influences carbon metabolism in algae. In Chlamydomonas reinhardtii, the inhibition and knockdown (KD) of algal class III PI3K led to significantly decreased cell growth, altered cell morphology, and higher lipid and starch contents. Lipid profiling of wild-type and PI3K KD lines showed significantly reduced membrane lipid breakdown under nitrogen starvation (-N) in the KD. RNA-seq and network analyses showed that under -N conditions, the KD line carried out lipogenesis rather than lipid hydrolysis by initiating de novo fatty acid biosynthesis, which was supported by tricarboxylic acid cycle down-regulation and via acetyl-CoA synthesis from glycolysis. Remarkably, autophagic responses did not have primacy over inositide signaling in algae, unlike in mammals and vascular plants. The mutant displayed a fundamental shift in intracellular energy flux, analogous to that in tumor cells. The high free fatty acid levels and reduced mitochondrial ATP generation led to decreased cell viability. These results indicate that the PI3K signal transduction pathway is the metabolic gatekeeper restraining biofuel yields, thus maintaining fitness and viability under stress in algae. This study demonstrates the existence of homeostasis between starch and lipid synthesis controlled by lipid signaling in algae and expands our understanding of such processes, with biotechnological and evolutionary implications.Ministry of Science, ICT and Future Planning 2015M3A6A2065697Ministry of Oceans and Fisheries 2015018

    Interferometric detection of prostate specific antigen based on enzyme immunoassay

    Get PDF
    AbstractInterferometric detection of Prostate-specific antigen (PSA) based on enzyme immunoassay are investigated. Refractive index changes of substrate are measured for PSA detection. Michelson scheme of optical interferometer was used so as to be applicable to a disposable fluidic chip. When interferometer is used for the measurements of refractive index changes, the detection is over 8 times more sensitive than that of absorbance changes for the same amount of target protein

    Clinical and laboratory profiles of hospitalized children with acute respiratory virus infection

    Get PDF
    PurposeDespite the availability of molecular methods, identification of the causative virus in children with acute respiratory infections (ARIs) has proven difficult as the same viruses are often detected in asymptomatic children.MethodsMultiplex reverse transcription polymerase chain reaction assays were performed to detect 15 common respiratory viruses in children under 15 years of age who were hospitalized with ARI between January 2013 and December 2015. Viral epidemiology and clinical profiles of single virus infections were evaluated.ResultsOf 3,505 patients, viruses were identified in 2,424 (69.1%), with the assay revealing a single virus in 1,747 cases (49.8%). While major pathogens in single virus-positive cases differed according to age, human rhinovirus (hRV) was common in patients of all ages. Respiratory syncytial virus (RSV), influenza virus (IF), and human metapneumovirus (hMPV) were found to be seasonal pathogens, appearing from fall through winter and spring, whereas hRV and adenovirus (AdV) were detected in every season. Patients with ARIs caused by RSV and hRV were frequently afebrile and more commonly had wheezing compared with patients with other viral ARIs. Neutrophil-dominant inflammation was observed in ARIs caused by IF, AdV, and hRV, whereas lymphocyte-dominant inflammation was observed with RSV A, parainfluenza virus, and hMPV. Monocytosis was common with RSV and AdV, whereas eosinophilia was observed with hRV.ConclusionIn combination with viral identification, recognition of virus-specific clinical and laboratory patterns will expand our understanding of the epidemiology of viral ARIs and help us to establish more efficient therapeutic and preventive strategies

    Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells

    Get PDF
    Ras/Raf/MEKs/ERKs and PI3 K/Akt/mTOR signaling pathways have key roles in cancer development and growth processes, as well as in cancer malignance and chemoresistance. In this study, we screened the therapeutic potential of magnolin using 15 human cancer cell lines and combined magnolin sensitivity with the CCLE mutaome analysis for relevant mutation information. The results showed that magnolin efficacy on cell proliferation inhibition were lower in TOV‐112D ovarian cancer cells than that in SKOV3 cells by G1 and G2/M cell cycle phase accumulation. Notably, magnolin suppressed colony growth of TOV‐112D cells in soft agar, whereas colony growth of SKOV3 cells in soft agar was not affected by magnolin treatment. Interestingly, phospho‐protein profiles in the MAPK and PI3 K signaling pathways indicated that SKOV3 cells showed marked increase of Akt phosphorylation at Thr308 and Ser473 and very weak ERK1/2 phosphorylation levels by EGF stimulation. The phospho‐protein profiles in TOV‐112D cells were the opposite of those of SKOV3 cells. Importantly, magnolin treatment suppressed phosphorylation of RSKs in TOV‐112D, but not in SKOV3 cells. Moreover, magnolin increased SA‐ÎČ‐galactosidase‐positive cells in a dose‐dependent manner in TOV‐112D cells, but not in SKOV3 cells. Notably, oral administration of Shin‐Yi fraction 1, which contained magnolin approximately 53%, suppressed TOV‐112D cell growth in athymic nude mice by induction of p16Ink4a and p27Kip1. Taken together, targeting of ERK1 and ERK2 is suitable for the treatment of ovarian cancer cells that do not harbor the constitutive active P13 K mutation and the loss‐of‐function mutations of the p16 and/or p53 tumor suppressor proteins
    • 

    corecore