96 research outputs found

    Influence of support stiffness on aero-engine coupling vibration quantitative analysis

    Get PDF
    This paper investigates the whole aero-engine coupling vibration, as a rotor tester to be the research object. The rotor tester system is composed of two mountings, stator system, support structures and the rotor system. The modal experiment of the whole tester under the condition of mounting in the test room is carried out. The finite element (FE) model of the rotor tester is built, and the model was modified and validated according to the modal test results. A rotor-stator coupling factor and a section rotor-stator rubbing risk coefficient are proposed, the influence of the support stiffness values on the engine vibration characteristics, such as natural frequencies, modal shapes, rotor-stator coupling degree, and stator-rotor rubbing risk degree at compressor and turbine section is quantitative studied. Results show that the support stiffness contributes to the rigid body modal shapes greatly and to the rotor bending ones slightly. The factor and coefficient defined in this study are both reasonable, and they can reflect the corresponding characteristics exactly. Moreover, the effect of the supports stiffness values on the rotor-stator coupling degree and the rotor-stator rubbing risk degree is nonlinear. The rotor-stator coupling factor and the section stator-rotor rubbing risk coefficient proposed in this study provide a new way to quantitatively research the whole engine coupling vibration

    Active vision for deep visual learning: a unified pooling framework

    Get PDF
    Convolutional Neural Networks (CNNs) can be generally regarded as learning-based visual systems for computer vision tasks. By imitating the operating mechanism of the human visual system (HVS), CNNs can even achieve better results than human beings in some visual tasks. However, they are primary when compared to the HVS for the reason that the HVS has the ability of active vision to promptly analyze and adapt to specific tasks. In this study, a new unified pooling framework was proposed and a series of pooling methods were designed based on the framework to implement active vision to CNNs. In addition, an active selection pooling (ASP) was put forward to reorganize existing and newly proposed pooling methods. The CNN models with ASP tend to have a behavior of focus selection according to tasks during training process, which acts extrememly similar to the HVS

    Dynamic Responses of Continuous Girder Bridges with Uniform Cross-Section under Moving Vehicular Loads

    Get PDF
    To address the drawback of traditional method of investigating dynamic responses of the continuous girder bridge with uniform cross-section under moving vehicular loads, the orthogonal experimental design method is proposed in this paper. Firstly, some empirical formulas of natural frequencies are obtained by theoretical derivation and numerical simulation. The effects of different parameters on dynamic responses of the vehicle-bridge coupled vibration system are discussed using our own program. Finally, the orthogonal experimental design method is proposed for the dynamic responses analysis. The results show that the effects of factors on dynamic responses are dependent on both the selected position and the type of the responses. In addition, the interaction effects between different factors cannot be ignored. To efficiently reduce experimental runs, the conventional orthogonal design is divided into two phases. It has been proved that the proposed method of the orthogonal experimental design greatly reduces calculation cost, and it is efficient and rational enough to study multifactor problems. Furthermore, it provides a good way to obtain more rational empirical formulas of the DLA and other dynamic responses, which may be adopted in the codes of design and evaluation

    Inflammation-related proteomics demonstrate landscape of fracture blister fluid in patients with acute compartment syndrome

    Get PDF
    BackgroundBlisters are tense vesicles or bullae that arise on swollen skin and are found in a wide range of injuries. As a complication of fracture, fracture blisters are considered soft tissue injuries, which often lead to adverse effects such as prolonged preoperative waiting time and increased risk of surgical site infection. However, our previous study found that in patients with acute compartment syndrome, fracture blisters may be a form of compartment pressure release, but the specific mechanism has not been revealed. Here, we mapped out the proteomic landscape of fracture blister fluid for the first time and compared its expression profile to cupping and burn blisters.MethodsFirst, fluid samples were collected from 15 patients with fracture blisters, 7 patients with cupping blisters, and 9 patients with burn blisters. Then, the expression levels of 92 inflammatory proteins were measured using the Olink Target 96 Inflammation panel. Protein profiles were compared across the three groups using Differential Protein Expression Analysis and Principal Component Analysis (PCA).ResultsFracture blisters had significantly higher levels of 50 proteins in comparison to cupping and 26 proteins in comparison to burn blisters. Notably, PCA showed fracture blisters closely resembled the protein expression profile of burn blisters but were distinct from the protein expression profile of cupping blisters.ConclusionOur study provides the first characterization of fracture blister fluid using proteomics, which provides a valuable reference for further analysis of the difference between blisters caused by fractures and those caused by other pathogenic factors. This compendium of proteomic data provides valuable insights and a rich resource to better understand fracture blisters

    Association between sleep duration and quality with rapid kidney function decline and development of chronic kidney diseases in adults with normal kidney function: The China health and retirement longitudinal study

    Get PDF
    Research have shown that sleep is associated with renal function. However, the potential effects of sleep duration or quality on kidney function in middle-aged and older Chinese adults with normal kidney function has rarely been studied. Our study aimed to investigate the association of sleep and kidney function in middle-aged and older Chinese adults. Four thousand and eighty six participants with an eGFR ≥60 ml/min/1.73 m2 at baseline were enrolled between 2011 and 2015 from the China Health and Retirement Longitudinal Study. Survey questionnaire data were collected from conducted interviews in the 2011. The eGFR was estimated from serum creatinine and/or cystatin C using the Chronic Kidney Disease Epidemiology Collaboration equations (CKD-EPI). The primary outcome was defined as rapid kidney function decline. Secondary outcome was defined as rapid kidney function decline with clinical eGFR of <60 ml/min/1.73 m2 at the exit visit. The associations between sleep duration, sleep quality and renal function decline or chronic kidney disease (CKD) were assessed based with logistic regression model. Our results showed that 244 (6.0%) participants developed rapid decline in kidney function, while 102 (2.5%) developed CKD. In addition, participants who had 3–7 days of poor sleep quality per week had higher risks of CKD development (OR 1.86, 95% CI 1.24–2.80). However, compared with those who had 6–8 h of night-time sleep, no significantly higher risks of rapid decline in kidney function was found among those who had <6 h or >8 h of night time sleep after adjustments for demographic, clinical, or psychosocial covariates. Furthermore, daytime nap did not present significant risk in both rapid eGFR decline or CKD development. In conclusion, sleep quality was significantly associated with the development of CKD in middle-aged and older Chinese adults with normal kidney function

    Single-cell RNA-seq reveals cellular heterogeneity from deep fascia in patients with acute compartment syndrome

    Get PDF
    IntroductionHigh stress in the compartment surrounded by the deep fascia can cause acute compartment syndrome (ACS) that may result in necrosis of the limbs. The study aims to investigate the cellular heterogeneity of the deep fascia in ACS patients by single-cell RNA sequencing (scRNA-seq).MethodsWe collected deep fascia samples from patients with ACS (high-stress group, HG, n=3) and patients receiving thigh amputation due to osteosarcoma (normal-stress group, NG, n=3). We utilized ultrasound and scanning electron microscopy to observe the morphologic change of the deep fascia, used multiplex staining and multispectral imaging to explore immune cell infiltration, and applied scRNA-seq to investigate the cellular heterogeneity of the deep fascia and to identify differentially expressed genes.ResultsNotably, we identified GZMK+interferon-act CD4 central memory T cells as a specific high-stress compartment subcluster expressing interferon-related genes. Additionally, the changes in the proportions of inflammation-related subclusters, such as the increased proportion of M2 macrophages and decreased proportion of M1 macrophages, may play crucial roles in the balance of pro-inflammatory and anti-inflammatory in the development of ACS. Furthermore, we found that heat shock protein genes were highly expressed but metal ion-related genes (S100 family and metallothionein family) were down-regulated in various subpopulations under high stress.ConclusionsWe identified a high stress-specific subcluster and variations in immune cells and fibroblast subclusters, as well as their differentially expressed genes, in ACS patients. Our findings reveal the functions of the deep fascia in the pathophysiology of ACS, providing new approaches for its treatment and prevention

    Design and synthesis of ordered periodical mesoporous organosilicas for various applications

    No full text
    Periodical Mesoporous Organosilicas (PMOs) is a new class of solid mesoporous materials that have various applications in many fields such as gas storage, catalysis and sequestration of pollutants etc. Design and synthesize new PMOs for different applications--gas storage and catalysis--are of great importance for both materials research and industry. A novel pyridine urea (PU) precursor ligand was designed, synthesized and successfully incorporated into PMOs. The PU precursor functionalized PMOs was an excellent solid support for catalytic active species like palladium. The PU-PMOs supported palladium catalyst shows outstanding catalytic activity for Suzuki and Sonogashira cross coupling reactions while the PMOs do not exhibit significant adsorption ability for carbon dioxide. Another nitrogen rich ligand (NTT), with many amine and triazole groups was designed and synthesized. This NTT ligand was designed to have rate acceleration ability for copper catalyzed alkyne –azide cycloaddition (CuAAC) reaction to be incorporated into PMOs for carbon dioxide adsorption.Master of Scienc

    Clinical Effects of the Probing Method with Depth Gauge for Determining the Screw Depth of Locking Proximal Humeral Plate

    No full text
    Background. The use of locking plates has gained popularity to treat proximal humeral fractures. However, the complication rates remain high. Biomechanical study suggested that subchondral screw-tip abutment significantly increased the stability of plant. We present a simple method to obtain the proper screw length through the depth gauge in elderly patients and compared the clinical effects with traditional measuring method. Methods. 40 patients were separated into two groups according to the two surgical methods: the probing method with depth gauge and the traditional measuring method. The intraoperative indexes and postoperative complications were recorded. The Constant and Murley score was used for the functional assessment in the 12th month. Results. Operative time and intraoperative blood loss indicated no statistical differences. X-ray exposure time and the patients with screw path penetrating the articular cartilage significantly differed. Postoperative complications and Constant and Murley score showed no statistical differences. Conclusions. Probing method with depth gauge is an appropriate alternative to determine the screw length, which can make the screw-tip adjoin the subchondral bone and keep the articular surface of humeral head intact and at the same time effectively avoid frequent X-ray fluoroscopy and adjusting the screws
    • …
    corecore