4 research outputs found

    Urinary Malondialdehyde Is Associated with Visceral Abdominal Obesity in Middle-Aged Men

    Get PDF
    The purpose of the present study was to investigate multiple anthropometric parameters used to evaluate obesity, particularly visceral abdominal fat area, and various metabolic parameters including malondialdehyde (MDA) as an oxidative stress marker. We evaluated various measures of obesity, including body mass index (BMI), waist circumference (WC), sagittal abdominal diameter, fat percentages using dual-energy X-ray absorptiometry, visceral fat area (VFA), subcutaneous fat area, multiple biomarkers related to metabolic disease, and urinary MDA, in 73 asymptomatic middle-aged men who were not severely obese. We examined relationships between multiple measures of obesity, metabolic markers, and urinary MDA levels and evaluated associations between VFA and urinary MDA. In the visceral obesity group, -glutamyl transferase (GGT), uric acid, and urinary MDA levels were significantly higher than in the nonvisceral obesity group (P = 0.008, P = 0.002, and P = 0.018). Urinary MDA (r = 0.357, P = 0.002) and uric acid (r = 0.263, P = 0.027) levels were only significantly positively correlated with VFA among measures of obesity. Urinary MDA, serum GGT, and serum CRP were significantly positively associated with VFA (P = 0.001, P = 0.046, and P = 0.023, resp.), even after adjusting for BMI and WC

    Digital rock physics benchmarks. Pt.II: Computing effective properties

    No full text
    This is the second and final part of our digital rock physics (DRP) benchmarking study. We use segmented 3-D images (one for Fontainebleau, three for Berea, three for a carbonate, and one for a sphere pack) to directly compute the absolute permeability, the electrical resistivity, and elastic moduli. The numerical methods tested include a finite-element solver (elastic moduli and electrical conductivity), two finite-difference solvers (elastic moduli and electrical conductivity), a Fourier-based Lippmann-Schwinger solver (elastic moduli), a lattice-Boltzmann solver (hydraulic permeability), and the explicit-jump method (hydraulic permeability and electrical conductivity). The set-ups for these numerical experiments, including the boundary conditions and the total model size, varied as well. The results thus produced vary from each other. For example, the highest computed permeability value may differ from the lowest one by a factor of 1.5. Nevertheless, all these result s fall within the ranges consistent with the relevant laboratory data. Our analysis provides the DRP community with a range of possible outcomes which can be expected depending on the solver and its setup

    Urinary Malondialdehyde Is Associated with Visceral Abdominal Obesity in Middle-Aged Men

    No full text
    The purpose of the present study was to investigate multiple anthropometric parameters used to evaluate obesity, particularly visceral abdominal fat area, and various metabolic parameters including malondialdehyde (MDA) as an oxidative stress marker. We evaluated various measures of obesity, including body mass index (BMI), waist circumference (WC), sagittal abdominal diameter, fat percentages using dual-energy X-ray absorptiometry, visceral fat area (VFA), subcutaneous fat area, multiple biomarkers related to metabolic disease, and urinary MDA, in 73 asymptomatic middle-aged men who were not severely obese. We examined relationships between multiple measures of obesity, metabolic markers, and urinary MDA levels and evaluated associations between VFA and urinary MDA. In the visceral obesity group, γ-glutamyl transferase (GGT), uric acid, and urinary MDA levels were significantly higher than in the nonvisceral obesity group (P = 0.008, P = 0.002, and P = 0.018). Urinary MDA (r = 0.357, P = 0.002) and uric acid (r = 0.263, P = 0.027) levels were only significantly positively correlated with VFA among measures of obesity. Urinary MDA, serum GGT, and serum CRP were significantly positively associated with VFA (P = 0.001, P = 0.046, and P = 0.023, resp.), even after adjusting for BMI and WC
    corecore