261 research outputs found

    Structural origin of the anomalous temperature dependence of the local magnetic moments in the CaFe2_{2}As2_{2} family of materials

    Full text link
    We report a combination of Fe Kβ\beta x-ray emission spectroscopy and abab-intio calculations to investigate the correlation between structural and magnetic degrees of freedom in CaFe2_{2}(As1x_{1-x}Px_{x} )2_{2}. The puzzling temperature behavior of the local moment found in rare earth-doped CaFe2_{2}As2_{2} [\textit{H. Gretarsson, et al., Phys. Rev. Lett. {\bf 110}, 047003 (2013)}] is also observed in CaFe2_{2}(As1x_{1-x}Px_{x})2_{2}. We explain this phenomenon based on first-principles calculations with scaled magnetic interaction. One scaling parameter is sufficient to describe quantitatively the magnetic moments in both CaFe2_{2}(As1x_{1-x}Px_{x} )2_{2} (x=0.055x=0.055) and Ca0.78_{0.78}% La0.22_{0.22}Fe2_{2}As2_{2} at all temperatures. The anomalous growth of the local moments with increasing temperature can be understood from the observed large thermal expansion of the cc-axis lattice parameter combined with strong magnetoelastic coupling. These effects originate from the strong tendency to form As-As dimers across the Ca layer in the CaFe2_{2}As2_{2} family of materials. Our results emphasize the dual local-itinerant character of magnetism in Fe pnictides

    Spin reorientation in FeCrAs revealed by single-crystal neutron diffraction

    Full text link
    The magnetic structure of the "nonmetallic metal" FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be k\mathit{k} = (1/3, 1/3, 0), and the magnetic reflections disppeared above TN\mathit{T_{N}} = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 μB\mu_{B} on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 μB\mu_{B}. With increasing temperature up to 95 K, the Cr moments cant out of the ab\mathit{ab} plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the c\mathit{c}-direction magnetic susceptibility and the kink in the magnetic order parameter at TO\mathit{T_{O}} ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.Comment: 8 pages, 7 figures, Accepted by Phys. Rev.

    A structural study of hcp and liquid iron under shock compression up to 275 GPa

    Full text link
    We combine nanosecond laser shock compression with \emph{in-situ} picosecond X-ray diffraction to provide structural data on iron up to 275 GPa. We constrain the extent of hcp-liquid coexistence, the onset of total melt, and the structure within the liquid phase. Our results indicate that iron, under shock compression, melts completely by 258(8) GPa. A coordination number analysis indicates that iron is a simple liquid at these pressure-temperature conditions. We also perform texture analysis between the ambient body-centered-cubic (bcc) α\alpha, and the hexagonal-closed-packed (hcp) high-pressure ϵ\epsilon-phase. We rule out the Rong-Dunlop orientation relationship (OR) between the α\alpha and ϵ\epsilon-phases. However, we cannot distinguish between three other closely related ORs: Burger's, Mao-Bassett-Takahashi, and Potter's OR. The solid-liquid coexistence region is constrained from a melt onset pressure of 225(3) GPa from previously published sound speed measurements and full melt (246.5(1.8)-258(8) GPa) from X-ray diffraction measurements, with an associated maximum latent heat of melting of 623 J/g. This value is lower than recently reported theoretical estimates and suggests that the contribution to the earth's geodynamo energy budget from heat release due to freezing of the inner core is smaller than previously thought. Melt pressures for these nanosecond shock experiments are consistent with gas gun shock experiments that last for microseconds, indicating that the melt transition occurs rapidly

    National Cancer Institute’s First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation: Summary and Recommendations from the Organizing Committee

    Get PDF
    The National Cancer Institute’s First International Workshop on the Biology, Prevention, and Treatment of Relapse after Allogeneic Hematopoietic Stem Cell Transplantation was organized and convened to identify, prioritize, and coordinate future research activities related to relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Each of the Workshop’s 6 Working Committees has published individual reports of ongoing basic, translational, and clinical research and recommended areas for future research related to the areas of relapse biology, epidemiology, prevention, and treatment. This document summarizes each committee’s recommendations and suggests 3 major initiatives for a coordinated research effort to address the problem of relapse after allo-HSCT: (1) to establish multicenter correlative and clinical trial networks for basic/translational, epidemiologic, and clinical research; (2) to establish a network of biorepositories for the collection of samples before and after allo-HSCT to aid in laboratory and clinical studies; and (3) to further refine, implement, and study the Workshop-proposed definitions for disease-specific response and relapse and recommendations for monitoring of minimal residual disease. These recommendations, in coordination with ongoing research initiatives and transplantation organizations, provide a research framework to rapidly and efficiently address the significant problem of relapse after allo-HSCT

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore