18 research outputs found

    Intercellular Arc Signaling Regulates Vasodilation.

    No full text

    Conserved Expression of Nav1.7 and Nav1.8 Contribute to the Spontaneous and Thermally Evoked Excitability in IL-6 and NGF-Sensitized Adult Dorsal Root Ganglion Neurons In Vitro

    No full text
    Sensory neurons respond to noxious stimuli by relaying information from the periphery to the central nervous system via action potentials driven by voltage-gated sodium channels, specifically Nav1.7 and Nav1.8. These channels play a key role in the manifestation of inflammatory pain. The ability to screen compounds that modulate voltage-gated sodium channels using cell-based assays assumes that key channels present in vivo is maintained in vitro. Prior electrophysiological work in vitro utilized acutely dissociated tissues, however, maintaining this preparation for long periods is difficult. A potential alternative involves multi-electrode arrays which permit long-term measurements of neural spike activity and are well suited for assessing persistent sensitization consistent with chronic pain. Here, we demonstrate that the addition of two inflammatory mediators associated with chronic inflammatory pain, nerve growth factor (NGF) and interleukin-6 (IL-6), to adult DRG neurons increases their firing rates on multi-electrode arrays in vitro. Nav1.7 and Nav1.8 proteins are readily detected in cultured neurons and contribute to evoked activity. The blockade of both Nav1.7 and Nav1.8, has a profound impact on thermally evoked firing after treatment with IL-6 and NGF. This work underscores the utility of multi-electrode arrays for pharmacological studies of sensory neurons and may facilitate the discovery and mechanistic analyses of anti-nociceptive compounds

    The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative–hypnotic, antistress, anxiolytic, and cognitive effects

    No full text
    Background: Panax vietnamensis Ha et Grushv. or Vietnamese ginseng (VG) is a recently discovered ginseng species. Studies on its chemical constituents have shown that VG is remarkably rich in ginseng saponins, particularly ocotillol saponins. However, the psychopharmacological effects of VG have not been characterized. Thus, in the present study we screened the psychopharmacological activities of VG in mice. Methods: VG extract (VGE) was orally administered to mice at various dosages to evaluate its psychomotor (open-field and rota-rod tests), sedative–hypnotic (pentobarbital-induced sleeping test), antistress (cold swimming test), anxiolytic (elevated plus-maze test), and cognitive (Y-maze and passive-avoidance tests) effects. Results: VGE treatment increased the spontaneous locomotor activity, enhanced the endurance to stress, reduced the anxiety-like behavior, and ameliorated the scopolamine-induced memory impairments in mice. In addition, VGE treatment did not alter the motor balance and coordination of mice and did not potentiate pentobarbital-induced sleep, indicating that VGE has no sedative-hypnotic effects. The effects of VGE were comparable to those of the Korean Red Ginseng extract. Conclusion: VG, like other ginseng products, has significant and potentially useful psychopharmacological effects. This includes, but is not limited to, psychomotor stimulation, anxiolytic, antistress, and memory enhancing effects
    corecore