69 research outputs found

    Evaluating the Cellular Targets of Anti-4-1BB Agonist Antibody during Immunotherapy of a Pre-Established Tumor in Mice

    Get PDF
    Manipulation of the immune system represents a promising avenue for cancer therapy. Rational advances in immunotherapy of cancer will require an understanding of the precise correlates of protection. Agonistic antibodies against the tumor necrosis factor receptor family member 4-1BB are emerging as a promising tool in cancer therapy, with evidence that these antibodies expand both T cells as well as innate immune cells. Depletion studies have suggested that several cell types can play a role in these immunotherapeutic regimens, but do not reveal which cells must directly receive the 4-1BB signals for effective therapy.We show that re-activated memory T cells are superior to resting memory T cells in control of an 8-day pre-established E.G7 tumor in mice. We find that ex vivo activation of the memory T cells allows the activated effectors to continue to divide and enter the tumor, regardless of antigen-specificity; however, only antigen-specific reactivated memory T cells show any efficacy in tumor control. When agonistic anti-4-1BB antibody is combined with this optimized adoptive T cell therapy, 80% of mice survive and are fully protected from tumor rechallenge. Using 4-1BB-deficient mice and mixed bone marrow chimeras, we find that it is sufficient to have 4-1BB only on the endogenous host alphabeta T cells or only on the transferred T cells for the effects of anti-4-1BB to be realized. Conversely, although multiple immune cell types express 4-1BB and both T cells and APC expand during anti-4-1BB therapy, 4-1BB on cells other than alphabeta T cells is neither necessary nor sufficient for the effect of anti-4-1BB in this adoptive immunotherapy model.This study establishes alphabeta T cells rather than innate immune cells as the critical target in anti-4-1BB therapy of a pre-established tumor. The study also demonstrates that ex vivo activation of memory T cells prior to infusion allows antigen-specific tumor control without the need for reactivation of the memory T cells in the tumor

    Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition

    Get PDF
    About half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types. Long interspersed nuclear element (LINE-1; L1 hereafter) insertions emerged as the first most frequent type of somatic structural variation in esophageal adenocarcinoma, and the second most frequent in head-and-neck and colorectal cancers. Aberrant L1 integrations can delete megabase-scale regions of a chromosome, which sometimes leads to the removal of tumor-suppressor genes, and can induce complex translocations and large-scale duplications. Somatic retrotranspositions can also initiate breakage–fusion–bridge cycles, leading to high-level amplification of oncogenes. These observations illuminate a relevant role of L1 retrotransposition in remodeling the cancer genome, with potential implications for the development of human tumors

    Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing

    Get PDF
    Funder: Ludwig Center at HarvardFunder: National Cancer Institute: K22CA193848Funder: US National Institutes of Health Intramural Research Program Project Z1AES103266Abstract: Chromothripsis is a mutational phenomenon characterized by massive, clustered genomic rearrangements that occurs in cancer and other diseases. Recent studies in selected cancer types have suggested that chromothripsis may be more common than initially inferred from low-resolution copy-number data. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we analyze patterns of chromothripsis across 2,658 tumors from 38 cancer types using whole-genome sequencing data. We find that chromothripsis events are pervasive across cancers, with a frequency of more than 50% in several cancer types. Whereas canonical chromothripsis profiles display oscillations between two copy-number states, a considerable fraction of events involve multiple chromosomes and additional structural alterations. In addition to non-homologous end joining, we detect signatures of replication-associated processes and templated insertions. Chromothripsis contributes to oncogene amplification and to inactivation of genes such as mismatch-repair-related genes. These findings show that chromothripsis is a major process that drives genome evolution in human cancer

    High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations.

    Get PDF
    The impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
    corecore