4 research outputs found
Low-temperature and fast-charge sodium metal batteries
Abstract: Low-temperature operation of sodium metal batteries (SMBs) at the high rate faces challenges of unstable solid electrolyte interphase (SEI), Na dendrite growth, and sluggish Na+ transfer kinetics, causing a largely capacity curtailment. Herein, low-temperature and fast-charge SMBs are successfully constructed by synergetic design of the electrolyte and electrode. The optimized weak-solvation dual-salt electrolyte enables high Na plating/stripping reversibility and the formation of NaF-rich SEI layer to stabilize sodium metal. Moreover, an integrated copper sulfide electrode is in situ fabricated by directly chemical sulfuration of copper current collector with micro-sized sulfur particles, which significantly improves the electronic conductivity and Na+ diffusion, knocking down the kinetic barriers. Consequently, this SMB achieves the reversible capacity of 202.8 mAh g-1 at -20 degrees C and 1 C (1 C = 558 mA g-1). Even at -40 degrees C, a high capacity of 230.0 mAh g-1 can still be delivered at 0.2 C. This study is encouraging for further exploration of cryogenic alkali metal batteries, and enriches the electrode material for low-temperature energy storage. A low-temperature and fast-charge sodium metal battery is successfully constructed by simultaneous design of both the electrolyte and electrode. A weakly solvated dual-salt electrolyte enables fast ion desolvation and the formation of NaF-rich solid electrolyte interphase (SEI) layer to stabilize sodium metal, and meanwhile, CuS as the active material is simply prepared by in situ chemical sulfuration of copper current collector, knocking downg the kinitic barrier in electrode. This synergetic strategy could be extended to other cryogenic alkali metal batteries. imag
DataSheet_1_Immune-related gene-based prognostic index for predicting survival and immunotherapy outcomes in colorectal carcinoma.docx
IntroductionColorectal cancer shows high incidence and mortality rates. Immune checkpoint blockade can be used to treat colorectal carcinoma (CRC); however, it shows limited effectiveness in most patients.MethodsTo identify patients who may benefit from immunotherapy using immune checkpoint inhibitors, we constructed an immune-related gene prognostic index (IRGPI) for predicting the efficacy of immunotherapy in patients with CRC. Transcriptome datasets and clinical information of patients with CRC were used to identify differential immune-related genes between tumor and para-carcinoma tissue. Using weighted correlation network analysis and Cox regression analysis, the IRGPI was constructed, and Kaplan–Meier analysis was used to evaluate its predictive ability. We also analyzed the molecular and immune characteristics between IRGPI high-and low-risk subgroups, performed sensitivity analysis of ICI treatment, and constructed overall survival-related receiver operating characteristic curves to validate the IRGPI. Finally, IRGPI genes and tumor immune cell infiltration in CRC model mice with orthotopic metastases were analyzed to verify the results.ResultsThe IRGPI was constructed based on the following 11 hub genes: ADIPOQ, CD36, CCL24, INHBE, UCN, IL1RL2, TRIM58, RBCK1, MC1R, PPARGC1A, and LGALS2. Patients with CRC in the high-risk subgroup showed longer overall survival than those in the low-risk subgroup, which was confirmed by GEO database. Clinicopathological features associated with cancer progression significantly differed between the high- and low-risk subgroups. Furthermore, Kaplan–Meier analysis of immune infiltration showed that the increased infiltration of naïve B cells, macrophages M1, and regulatory T cells and reduced infiltration of resting dendritic cells and mast cells led to a worse overall survival in patients with CRC. The ORC curves revealed that IRGPI predicted patient survival more sensitive than the published tumor immune dysfunction and rejection and tumor inflammatory signatureDiscussionThus, the low-risk subgroup is more likely to benefit from ICIs than the high-risk subgroup. CRC model mice showed higher proportions of Tregs, M1 macrophages, M2 macrophages and lower proportions of B cells, memory B cell immune cell infiltration, which is consistent with the IRGPI results. The IRGPI can predict the prognosis of patients with CRC, reflect the CRC immune microenvironment, and distinguish patients who are likely to benefit from ICI therapy.</p