219 research outputs found

    Spatial-photonic Boltzmann machines: low-rank combinatorial optimization and statistical learning by spatial light modulation

    Full text link
    The spatial-photonic Ising machine (SPIM) [D. Pierangeli et al., Phys. Rev. Lett. 122, 213902 (2019)] is a promising optical architecture utilizing spatial light modulation for solving large-scale combinatorial optimization problems efficiently. However, the SPIM can accommodate Ising problems with only rank-one interaction matrices, which limits its applicability to various real-world problems. In this Letter, we propose a new computing model for the SPIM that can accommodate any Ising problem without changing its optical implementation. The proposed model is particularly efficient for Ising problems with low-rank interaction matrices, such as knapsack problems. Moreover, the model acquires learning ability and can thus be termed a spatial-photonic Boltzmann machine (SPBM). We demonstrate that learning, classification, and sampling of the MNIST handwritten digit images are achieved efficiently using SPBMs with low-rank interactions. Thus, the proposed SPBM model exhibits higher practical applicability to various problems of combinatorial optimization and statistical learning, without losing the scalability inherent in the SPIM architecture.Comment: 7 pages, 5 figures (with a 3-page supplemental

    マウスガードの自律神経活動への影響 : 瞳孔フラッシュ応答による定量的評価

    Get PDF
    Background:Recently, it has been reported that mouth guards (MGs), which reduce the incidence and severity of traumatic oral injuries in contact sports, may actually affect sports performance. We have observed that a majority of subjects showed improved dynamic visual acuity during head rotation when using a MG, but subjects who were unwilling to use a MG showed the opposite effect. Thus, we hypothesized that unpleasant sensations due to MGs may decrease sports performance.Methods:In this study, we measured autonomic nervous system activity to evaluate unpleasant sensations objectively and quantitatively by measuring the pupillary flash response (PFR) and heart rate variability (HRV), before, during, and after wearing 3- and 5-mm-thick custom-made MGs in 10 healthy subjects.Results:It was found that the 5-mm MG had a higher incidence of unpleasant sensations (50% of subjects) than did the 3-mm MG (10%). PFR (not HRV) analysis showed that both sympathetic and parasympathetic nervous system activities increased in subjects with unpleasant sensations.Conclusions:We suggest that the unpleasant sensation induced this unusual autonomic nervous system response, which could not be detected by traditional methods such as HRV analysis. By using PFR analysis, it is possible to make MGs without unpleasant sensations for better sports performance.博士(医学)・乙第1306号・平成24年11月27日Copyright © 2012 Japanese Stomatological Society. Published by Elsevier Japan K

    Spatial-photonic Ising machine by space-division multiplexing with physically tunable coefficients of a multi-component model

    Full text link
    This paper proposes a space-division multiplexed spatial-photonic Ising machine (SDM-SPIM) that physically calculates the weighted sum of the Ising Hamiltonians for individual components in a multi-component model. Space-division multiplexing enables tuning a set of weight coefficients as an optical parameter and obtaining the desired Ising Hamiltonian at a time. We solved knapsack problems to verify the system's validity, demonstrating that optical parameters impact the search property. We also investigated a new dynamic coefficient search algorithm to enhance search performance. The SDM-SPIM would physically calculate the Hamiltonian and a part of the optimization with an electronics process.Comment: 12 pages, 5 figure

    TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells

    Get PDF
    Recent findings have shown that embryonic vascular progenitor cells are capable of differentiating into mural and endothelial cells. However, the molecular mechanisms that regulate their differentiation, proliferation, and endothelial sheet formation remain to be elucidated. Here, we show that members of the transforming growth factor (TGF)-β superfamily play important roles during differentiation of vascular progenitor cells derived from mouse embryonic stem cells (ESCs) and from 8.5–days postcoitum embryos. TGF-β and activin inhibited proliferation and sheet formation of endothelial cells. Interestingly, SB-431542, a synthetic molecule that inhibits the kinases of receptors for TGF-β and activin, facilitated proliferation and sheet formation of ESC-derived endothelial cells. Moreover, SB-431542 up-regulated the expression of claudin-5, an endothelial specific component of tight junctions. These results suggest that endogenous TGF-β/activin signals play important roles in regulating vascular growth and permeability

    Analysis of hydroxy sphingomyelin

    Get PDF
    Sphingomyelin (SM) with N-α-hydroxy fatty acyl residues (hSM) has been shown to occur in mammalian skin and digestive epithelia. However, the metabolism and physiological relevance of this characteristic SM species have not been fully elucidated yet. Here, we show methods for mass spectrometric characterization and quantification of hSM. The hSM in mouse skin was isolated by TLC. The hydroxy hexadecanoyl residue was confirmed by electron impact ionization-induced fragmentation in gas chromatography-mass spectrometry. Mass shift analysis of acetylated hSM by time of flight mass spectrometry revealed the number of hydroxyl groups in the molecule. After correcting the difference in detection efficacy, hSM in mouse skin and intestinal mucosa were quantified by liquid chromatography-tandem mass spectrometry, and found to be 16.5 ± 2.0 and 0.8 ± 0.4 nmol/μmol phospholipid, respectively. The methods described here are applicable to biological experiments on hSM in epithelia of the body surface and digestive tract

    Identification of the Neogenin-Binding Site on the Repulsive Guidance Molecule A

    Get PDF
    Repulsive guidance molecule (RGM) is a membrane-bound protein that was originally identified as an axon guidance molecule in the chick retinotectal system. RGMa, one of the 3 isoforms found in mammals, is involved in laminar patterning, cephalic neural tube closure, axon guidance, and inhibition of axonal regeneration. In addition to its roles in the nervous system, RGMa plays a role in enhancing helper T-cell activation. Binding of RGM to its receptor, neogenin, is considered necessary to transduce these signals; however, information on the binding of RGM to neogenin is limited. Using co-immunoprecipitation studies, we have identified that the RGMa region required for binding to neogenin contains amino acids (aa) 259–295. Synthesized peptide consisting of aa 284–293 directly binds to the extracellular domain (ECD) of recombinant neogenin, and addition of this peptide inhibits RGMa-induced growth cone collapse in mouse cortical neurons. Thus, we propose that this peptide is a promising lead in finding reagents capable of inhibiting RGMa signaling

    Chronic Inflammatory Demyelinating Polyneuropathy With Concurrent Membranous Nephropathy: An Anti-paranode and Podocyte Protein Antibody Study and Literature Survey

    Get PDF
    Background: Several case reports have described the concurrence of chronic inflammatory demyelinating polyneuropathy (CIDP) and membranous nephropathy (MN). The presence of autoantibodies against podocyte antigens phospholipase A2 receptor (PLA2R) and thrombospondin type 1 domain containing 7A (THSD7A) in MN suggests an autoimmune mechanism. Some CIDP patients also harbor autoantibodies against paranodal proteins such as neurofascin 155 (NF155) and contactin-1 (CNTN1). We investigated the relationship between CIDP and MN by assaying autoantibodies against paranodal and podocyte antigens in a CIDP patient with MN, and by a literature survey on the clinical features of CIDP with MN.Methods: Anti-CNTN1 and NF155 antibodies were measured by flow cytometry using HEK293 cell lines stably expressing human CNTN1 or NF155. Binding capacity of antibodies was validated by immunostaining mouse teased sciatic nerve fibers. Anti-PLA2R antibodies were measured by enzyme-linked sorbent assay and anti-THSD7A antibodies by indirect immunofluorescence assay. Clinical features between 14 CIDP with MN cases including two with anti-CNTN1 antibodies and 20 anti-CNTN1 antibody-positive CIDP cases were compared.Results: A patient whose ages was in the late 70 s complained of progressive weakness and superficial and deep sensory impairment in four extremities over 6 months. Nerve conduction studies showed prominent demyelination patterns. The patient presented with nephrotic syndrome. Renal biopsy disclosed basement membrane thickening with local subepithelial projections and glomerular deposits of IgG4, compatible with MN. Autoantibody assays revealed the presence of IgG4 and IgG1 anti-CNTN1 antibodies, but an absence of anti-NF155, anti-PLA2R, and anti-THSD7A antibodies. The patient's serum stained paranodes of teased sciatic nerves. CIDP with MN and anti-CNTN1 antibody-positive CIDP commonly showed male preponderance, relatively higher age of onset, acute to subacute onset in 35–50% of cases, distal dominant sensorimotor neuropathy, proprioceptive impairment leading to sensory ataxia, and very high cerebrospinal fluid protein levels. However, 11 of 13 CIDP patients with MN had a favorable response to mono- or combined immunotherapies whereas anti-CNTN1 antibody-positive CIDP was frequently refractory to corticosteroids and intravenous immunoglobulin administration.Conclusion: CIDP with MN and anti-CNTN1 antibody-positive CIDP show considerable overlap but are not identical. CIDP with MN is probably heterogeneous and some cases harbor anti-CNTN1 antibodies

    Sitagliptin and Carotid Atherosclerosis in Type 2 Diabetes

    Get PDF
    Background Experimental studies have suggested that dipeptidyl peptidase-4 (DPP-4) inhibitors provide cardiovascular protective effects. We performed a randomized study to evaluate the effects of sitagliptin added on to the conventional therapy compared with conventional therapy alone (diet, exercise, and/or drugs, except for incretin-related agents) on the intima-media thickness (IMT) of the carotid artery, a surrogate marker for the evaluation of atherosclerotic cardiovascular disease, in people with type 2 diabetes mellitus (T2DM). Methods and Findings We used a multicenter PROBE (prospective, randomized, open label, blinded endpoint) design. Individuals aged ≥30 y with T2DM (6.2% ≤ HbA1c < 9.4%) were randomly allocated to receive either sitagliptin (25 to 100 mg/d) or conventional therapy. Carotid ultrasound was performed at participating medical centers, and all parameters were measured in a core laboratory. Of the 463 enrolled participants with T2DM, 442 were included in the primary analysis (sitagliptin group, 222; conventional therapy group, 220). Estimated mean (± standard error) common carotid artery IMT at 24 mo of follow-up in the sitagliptin and conventional therapy groups was 0.827 ± 0.007 mm and 0.837 ± 0.007 mm, respectively, with a mean difference of −0.009 mm (97.2% CI −0.028 to 0.011, p = 0.309). HbA1c level at 24 mo was significantly lower with sitagliptin than with conventional therapy (6.56% ± 0.05% versus 6.72%± 0.05%, p = 0.008; group mean difference −0.159, 95% CI −0.278 to −0.041). Episodes of serious hypoglycemia were recorded only in the conventional therapy group, and the rate of other adverse events was not different between the two groups. As it was not a placebo-controlled trial and carotid IMT was measured as a surrogate marker of atherosclerosis, there were some limitations of interpretation. Conclusions In the PROLOGUE study, there was no evidence that treatment with sitagliptin had an additional effect on the progression of carotid IMT in participants with T2DM beyond that achieved with conventional treatment
    corecore