317 research outputs found

    Simultaneous gene transfer of bone morphogenetic protein (BMP)-2 and BMP-7 by in vivo electroporation induces rapid bone formation and BMP-4 expression

    Get PDF
    Background: Transcutaneous in vivo electroporation is expected to be an effective gene-transfer method for promoting bone regeneration using the BMP-2 plasmid vector. To promote enhanced osteoinduction using this method, we simultaneously transferred cDNAs for BMP-2 and BMP-7, as inserts in the non-viral vector pCAGGS. Methods: First, an in vitro study was carried out to confirm the expression of BMP-2 and BMP-7 following the double-gene transfer. Next, the individual BMP-2 and BMP-7 plasmids or both together were injected into rat calf muscles, and transcutaneous electroporation was applied 8 times at 100 V, 50 msec. Results: In the culture system, the simultaneous transfer of the BMP-2 and BMP-7 genes led to a much higher ALP activity in C2C12 cells than did the transfer of either gene alone. In vivo, ten days after the treatment, soft X-ray analysis showed that muscles that received both pCAGGS-BMP-2 and pCAGGS-BMP-7 had better-defined opacities than those receiving a single gene. Histological examination showed advanced ossification in calf muscles that received the double-gene transfer. BMP-4 mRNA was also expressed, and RT-PCR showed that its level increased for 3 days in a timedependent manner in the double-gene transfer group. Immunohistochemistry confirmed that BMP- 4-expressing cells resided in the matrix between muscle fibers. Conclusion: The simultaneous transfer of BMP-2 and BMP-7 genes using in vivo electroporation induces more rapid bone formation than the transfer of either gene alone, and the increased expression of endogenous BMP-4 suggests that the rapid ossification is related to the induction of BMP-4.</p

    EXPRESSION AND FUNCTION OF A NONGLYCOSYLATED MAJOR HISTOCOMPATIBILITY CLASS I ANTIGEN

    Full text link
    The major histocompatibility class I antigens, expressed in most somatic cells, have carbohydrate moieties. We constructed mutant mouse MHC class I genes in which codons for the N-linked glycosylation sites were replaced by those of other amino acids. L cell transformants expressing the nonglycosylated class I antigens allowed us to investigate biological roles of carbohydrates with the highest specificity possible. The nonglycosylated antigen was unchanged in its overall serological specificities, and was recognized by alloreactive cytotoxic T cells. Further, the antigen was capable of mediating cytotoxic activity of vesicular stomatitis virus-specific T cells. These studies indicate that carbohydrates are not essential for immunological function of the MHC class I antigens. Cell surface expression of the nonglycosylated antigen was markedly reduced as compared with the native antigen, which was not attributable to accelerated degradation or rapid shedding. We conclude that the primary role of carbohydrates of the class I antigens is to facilitate the intracellular transport of the nascent proteins to the plasma membrane. The possible involvement of carbohydrate-receptor interactions in this process is discussed

    Stepwise development of Hematopoietic stem Cells from Embryonic Stem Cells

    Get PDF
    The cellular ontogeny of hematopoietic stem cells (HSCs) remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC) differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs) as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+)CD41(+)CD45(−) phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner

    Pancreatic β Cell–specific Expression of  Thioredoxin, an Antioxidative and Antiapoptotic Protein, Prevents Autoimmune and Streptozotocin-induced Diabetes

    Get PDF
    The cytotoxicity of reactive oxygen intermediates (ROIs) has been implicated in the destruction of pancreatic β cells in insulin-dependent diabetes mellitus (IDDM). Thioredoxin (TRX), a redox (reduction/oxidation)-active protein, has recently been shown to protect cells from oxidative stress and apoptosis. To elucidate the roles of oxidative stress in the development of autoimmune diabetes in vivo, we produced nonobese diabetic transgenic mice that overexpress TRX in their pancreatic β cells. In these transgenic mice, the incidence of diabetes was markedly reduced, whereas the development of insulitis was not prevented. Moreover, induction of diabetes by streptozotocin, an ROI-generating agent, was also attenuated by TRX overexpression in β cells. This is the first direct demonstration that an antioxidative and antiapoptotic protein protects β cells in vivo against both autoimmune and drug-induced diabetes. Our results strongly suggest that oxidative stress plays an essential role in the destruction of β cells by infiltrating inflammatory cells in IDDM

    Tie2-Cre Transgenic Mice: A New Model for Endothelial Cell-Lineage Analysis in Vivo

    Get PDF
    AbstractEndocardial cells are thought to contribute at least in part to the formation of the endocardial cushion mesenchyme. Here, we created Tie2-Cre transgenic mice, in which expression of Cre recombinase is driven by an endothelial-specific promoter/enhancer. To analyze the lineage of Cre expressing cells, we used CAG-CAT-Z transgenic mice, in which expression of lacZ is activated only after Cre-mediated recombination. We detected pan-endothelial expression of the Cre transgene in Tie2-Cre;CAG-CAT-Z double-transgenic mice. This expression pattern is almost identical to Tie2-lacZ transgenic mice. However, interestingly, we observed strong and uniform lacZ expression in mesenchymal cells of the atrioventricular canal of Tie2-Cre;CAG-CAT-Z double-transgenic mice. We also detected lacZ expression in the mesenchymal cells in part of the proximal cardiac outflow tract, but not in the mesenchymal cells of the distal outflow tract and branchial arch arteries. LacZ staining in Tie2-Cre;CAG-CAT-Z embryos is consistent with endocardial–mesenchymal transformation in the atrioventricular canal and outflow tract regions. Our observations are consistent with previously reported results from Cx43-lacZ, Wnt1-Cre;R26R, and Pax3-Cre;R26R transgenic mice, in which lacZ expression in the cardiac outflow tract identified contributions in part from the cardiac neural crest. Tie2-Cre transgenic mice are a new genetic tool for the analyses of endothelial cell-lineage and endothelial cell–specific gene targeting

    Comparative study on the immunogenicity between an HLA-A24-restricted cytotoxic T-cell epitope derived from survivin and that from its splice variant survivin-2B in oral cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously reported an HLA-A24-restricted cytotoxic T-cell epitope, Survivin-2B80-88, derived from a splice variant of survivin, survivin-2B. In this report, we show a novel HLA-A24-restricted T-cell epitope, Survivin-C58, derived from a wild type survivin, and compared their immunogenicity in oral cancer patients.</p> <p>Methods</p> <p>By stimulating peripheral blood lymphocytes of HLA-A24-positive cancer patients with Survivin-C58 peptide <it>in vitro</it>, the peptide-specific CTLs were induced. In order to compare the immunogenic potential between C58 peptide and 2B80-88 peptide, peripheral blood T-cells from thirteen HLA-A24-positive oral cancer patients were stimulated with either or both of these two peptides.</p> <p>Results</p> <p>Survivin-2B80-88 peptide-specific CTLs were induced from four patients, and C58 peptide-specific CTLs were induced from three out of eight patients with over stage II progression. The CTLs exerted cytotoxicity against HLA-A24-positive tumor cells. In contrast, CTL induction failed from a healthy volunteer and all four patients with cancer stage I.</p> <p>Conclusion</p> <p>It was indicated that a splicing variant-derived peptide and wild type survivin-derived peptide might have a comparable potency of CTL induction, and survivin targeting immunotherapy using survivin-2B80-88 and C58 peptide cocktail should be suitable for HLA-A24+ oral cancer patients.</p
    corecore