5,914 research outputs found

    The development of beef cattle production in Korea

    Get PDF

    Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks for Building Extraction from Aerial Images

    Full text link
    Semantic segmentation models based on convolutional neural networks (CNNs) have gained much attention in relation to remote sensing and have achieved remarkable performance for the extraction of buildings from high-resolution aerial images. However, the issue of limited generalization for unseen images remains. When there is a domain gap between the training and test datasets, CNN-based segmentation models trained by a training dataset fail to segment buildings for the test dataset. In this paper, we propose segmentation networks based on a domain adaptive transfer attack (DATA) scheme for building extraction from aerial images. The proposed system combines the domain transfer and adversarial attack concepts. Based on the DATA scheme, the distribution of the input images can be shifted to that of the target images while turning images into adversarial examples against a target network. Defending adversarial examples adapted to the target domain can overcome the performance degradation due to the domain gap and increase the robustness of the segmentation model. Cross-dataset experiments and the ablation study are conducted for the three different datasets: the Inria aerial image labeling dataset, the Massachusetts building dataset, and the WHU East Asia dataset. Compared to the performance of the segmentation network without the DATA scheme, the proposed method shows improvements in the overall IoU. Moreover, it is verified that the proposed method outperforms even when compared to feature adaptation (FA) and output space adaptation (OSA).Comment: 11pages, 12 figure

    Biohydrogen Production from Waste Biomass

    Get PDF
    Biohydrogen production from waste biomass has recently gained more attention. At the South China University of Technology, our research group focuses on biohydrogen production from waste biomass that is based on a consolidated bioprocessing strategy. Cassava pulp, paper sludge, sugarcane bagasse, and spent mushroom compost have all been demonstrated to be feasible feedstocks for hydrogen production with Clostridium thermocellum. Furthermore, co-culture of C. thermocellum and Thermoanaerobacterium aotearoense can enhance the hydrogen production [1]. Besides, our studies showed that surfactant PEG8000 and CaCO3 both have positive effects on the hydrogen production by C. thermocellum [2-4].How does biohydrogen production from waste biomass catch our eyes and attract us to devote our efforts on it? With the rapid development of economy, all kinds of waste biomass produced every year are increasing. Recycle of waste biomass can avoid pollution following unsatisfactory disposal such as discard, landfill, and incineration in the field directly. Moreover, waste biomass as raw materials have no conflict with food supply. Thus, there is no doubt that biohydrogen from waste biomass is a promising environmentally friendly energy carrier for its high energy content, and its burning feature of producing only water as the by-product. Biohydrogen from waste biomass is renewable and has no contribution to environmental pollution and climate change, which are valuable for the current situation of increasingly serious energy and environmental issues in China and all over the world. Bioprocesses for hydrogen production from a variety of biomass materials even waste biomass are very promising in the near future.It is wonderful to produce biohydrogen from waste biomass, however, there are some barriers blocking us out of industrial production. Though the utilization of abundant waste biomass can lower the feedstock cost, the cost of biohydrogen production is still less competitive over traditional fuel oil. Furthermore, an inexpensive and simple pretreatment of waste biomass is needed for biohydrogen production. Technological barriers like hydrogen storage, compressor and distribution networks, lack of durable fuel cell technologies, and integration with the existing infrastructure remain to be overcome [5]. The significant problem of low hydrogen yield could be solved by metabolic engineering or co-culture of microorganisms with different advantages. Ideal biohydrogen production should meet the demand of high hydrogen yield and productivity simultaneously.Appropriate bioreactor design, hydrogen production in non-sterile conditions, and feasible techniques for separation or purification of hydrogen are beneficial to practical application. It is important to take the application requirement into consideration, when we are busy in studying biological technologies to improve the hydrogen yield. Advances in optimized processes and technologies would bring us closer to industrially viable biohydrogen production from waste biomass. A comprehensive consideration on industrial feasibility and laboratory investigation would accelerate the large scale production of biohydrogen.Citation: Zhu, M.-J., and Li, H.-N. (2016). Biohydrogen Production from Waste Biomass. Trends in Renewable Energy, 2(2), 54-55. DOI: 10.17737/tre.2016.2.2.002
    corecore