4,671 research outputs found

    LINE: Large-scale Information Network Embedding

    Full text link
    This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online.Comment: WWW 201

    Target-Mounted Intelligent Reflecting Surface for Joint Location and Orientation Estimation

    Full text link
    Intelligent reflecting surface (IRS) has been widely recognized as an efficient technique to reconfigure the electromagnetic environment in favor of wireless communication performance. In this paper, we propose a new application of IRS for device-free target sensing via joint location and orientation estimation. In particular, different from the existing works that use IRS as an additional anchor node for localization/sensing, we consider mounting IRS on the sensing target, whereby estimating the IRS's location and orientation as that of the target by leveraging IRS's controllable signal reflection. To this end, we first propose a tensor-based method to acquire essential angle information between the IRS and the sensing transmitter as well as a set of distributed sensing receivers. Next, based on the estimated angle information, we formulate two optimization problems to estimate the location and orientation of the IRS/target, respectively, and obtain the locally optimal solutions to them by invoking two iterative algorithms, namely, gradient descent method and manifold optimization. In particular, we show that the orientation estimation problem admits a closed-form solution in a special case that usually holds in practice. Furthermore, theoretical analysis is conducted to draw essential insights into the proposed sensing system design and performance. Simulation results verify our theoretical analysis and demonstrate that the proposed methods can achieve high estimation accuracy which is close to the theoretical bound.Comment: 30page

    Do Linear Dispersions of Classical Waves Mean Dirac Cones?

    Full text link
    By using the \vec{k}\cdot\vec{p} method, we propose a first-principles theory to study the linear dispersions in phononic and photonic crystals. The theory reveals that only those linear dispersions created by doubly-degenerate states can be described by a reduced Hamiltonian that can be mapped into the Dirac Hamiltonian and possess a Berry phase of -\pi. Triply-degenerate states can also generate Dirac-like cone dispersions, but the wavefunctions transform like a spin-1 particle and the Berry phase is zero. Our theory is capable of predicting accurately the linear slopes of Dirac/Dirac-like cones at various symmetry points in a Brilliouin zone, independent of frequency and lattice structure

    Two-dimensional modeling of the tearing-mode-governed magnetic reconnection in the large-scale current sheet above the two-ribbon flare

    Full text link
    We attempt to model magnetic reconnection during the two-ribbon flare in the gravitationally stratified solar atmosphere with the Lundquist number of S=106S=10^6 using 2D simulations. We found that the tearing mode instability leads to the inhomogeneous turbulence inside the reconnecting current sheet (CS) and invokes the fast phase of reconnection. Fast reconnection brings an extra dissipation of magnetic field which enhances the reconnection rate in an apparent way. The energy spectrum in the CS shows the power-law pattern and the dynamics of plasmoids governs the associated spectral index. We noticed that the energy dissipation occurs at a scale lkol_{ko} of 100-200~km, and the associated CS thickness ranges from 1500 to 2500~km, which follows the Taylor scale lT=lkoS1/6l_T=l_{ko} S^{1/6}. The termination shock(TS) appears in the turbulent region above flare loops, which is an important contributor to heating flare loops. Substantial magnetic energy is converted into both kinetic and thermal energies via TS, and the cumulative heating rate is greater than the rate of the kinetic energy transfer. In addition, the turbulence is somehow amplified by TS, of which the amplitude is related to the local geometry of the TS.Comment: 22 pages, 10 figures; Accepted for publication in Research in Astronomy and Astrophysic

    Analysis of nonlinear suspension power harvest potential

    Get PDF
    Because the power consumption of a controlled suspension is huge, the power harvest potential of a nonlinear controlled suspension is analyzed. Instead of simplifying the suspension to a linear model or adopting some control strategies to solve the problem, this paper investigates the effect of the nonlinear characteristics on the power harvesting potential. A mathematic model is introduced to calculate the nonlinear vibration, and the amount of harvested power was obtained using the multi-scale method. A numerical validation is carried out at the end of this study. The results show that the investigated mechanical parameters affect both the vibration amplitude and the induced current, while the electric parameters only affect the induced current. The power harvesting potential of the nonlinear suspension is generally greater than the linear suspension because the frequency band of the actual pavement also contains bandwidth surrounding the body resonance point. The only exception occurs if the vehicle travels on a road with a particular profile, e.g. a sine curve. To optimize harvested power, it is better to consider the nonlinear characteristics rather than simplifying the suspension to a linear model
    • …
    corecore