2,048 research outputs found

    Proton-Antiproton Annihilation in Baryonium

    Full text link
    A possible interpretation of the near-threshold enhancement in the (ppˉ)(p\bar{p})-mass spectrum in J/ψγppˉJ/\psi{\to}\gamma p{\bar p} is the of existence of a narrow baryonium resonance X(1860). Mesonic decays of the (ppˉ)(p\bar{p})-bound state X(1860) due to the nucleon-antinucleon annihilation are investigated in this paper. Mesonic coherent states with fixed GG-parity and PP-parity have been constructed . The Amado-Cannata-Dedoder-Locher-Shao formulation(Phys Rev Lett. {\bf 72}, 970 (1994)) is extended to the decays of the X(1860). By this method, the branch-fraction ratios of Br(Xη4π)Br(X\to \eta 4\pi), Br(Xη2π)Br(X\to \eta 2\pi) and Br(X3η)Br(X\to 3\eta) are calculated. It is shown that if the X(1860) is a bound state of (ppˉ)(p\bar{p}), the decay channel (Xη4π)X\to \eta 4\pi) is favored over (Xη2π)(X\to \eta 2\pi). In this way, we develop criteria for distinguishing the baryonium interpretation for the near-threshold enhancement effects in (ppˉ)(p\bar{p})-mass spectrum in J/ψγppˉJ/\psi{\to}\gamma p{\bar p} from other possibilities. Experimental checks are expected. An intuitive picture for our results is discussed.Comment: 19 pages, 3 figure

    Rotational Symmetry of Classical Orbits, Arbitrary Quantization of Angular Momentum and the Role of Gauge Field in Two-Dimensional Space

    Full text link
    We study the quantum-classical correspondence in terms of coherent wave functions of a charged particle in two-dimensional central-scalar-potentials as well as the gauge field of a magnetic flux in the sense that the probability clouds of wave functions are well localized on classical orbits. For both closed and open classical orbits, the non-integer angular-momentum quantization with the level-space of angular momentum being greater or less than \hbar is determined uniquely by the same rotational symmetry of classical orbits and probability clouds of coherent wave functions, which is not necessarily 2π2\pi-periodic. The gauge potential of a magnetic flux impenetrable to the particle cannot change the quantization rule but is able to shift the spectrum of canonical angular momentum by a flux-dependent value, which results in a common topological phase for all wave functions in the given model. The quantum mechanical model of anyon proposed by Wilczek (Phys. Rev. Lette. 48, 1144) becomes a special case of the arbitrary-quantization.Comment: 6 pages, 5 figure

    BONE MORPHOGENETIC PROTEIN-2 AND COLLAGEN TYPE 1 FROM DIFFERENT SOURCES OF DEMINERALIZED DENTINE MATRIX: RELEASE KINETIC AND CHEMOTAXIS POTENTIAL FOR OSTEOPROGENITOR CELLS

    Get PDF
    Objective: To investigate the release of bone morphogenetic protein-2 (BMP-2) and collagen type I proteins (COL1) from different sources ofdemineralized dentine matrix (DDM) and their chemotaxis to mouse osteoprogenitor cells.Methods: The release kinetic of BMP-2 and COL1 was measured from custom-made DDM (CMDDM) and commercially available DDM (CADDM).Using Urist physicochemical method, CMDDM was collected from the extracted teeth in a certified dental clinic. Levels of BMP-2 and COL1 releasedwere measured at days 1, 2, 3, 5, 7, 9, 11, and 13. Next, mouse osteoprogenitor cells, MC3T3-E1, were cultured with a variety of materials as follows:CMDDM, CADDM, Bio-Oss®, and blank control in transwell system. The number of cell migration was determined by crystal violet staining to explorechemotaxis of different DDMs to mouse osteoprogenitor cells.Results: BMP-2 was detected at 588.32 ± 14.53 pg/ml from 5 g of CMDDM. In the release kinetic assay, the concentration of BMP-2 in the CMDDMgroup increased rapidly and peaked at 113.9 pg/ml on day 5, almost four times higher than that of CADDM. The release of COL1 showed similarpattern in both CMDDM and CADDM; however, the amount was significantly higher in the CMDDM group. In cell culture experiment, the number ofmigrated MC3T3-E1 was ranked as the highest in CMDDM, followed by CADDM and Bio-Oss® (p<0.05).Conclusion: CMDDM released BMP-2 and COL1 greater than CADDM, which can induce more osteoblast-like cell migration. These results demonstrateda release kinetic of proteins and osteoinductivity of CMDDM, which supports a benefit of using autogenous bone graft

    Free field realization of the exceptional current superalgebra \hat{D(2,1;\a)}_k

    Full text link
    The free-field representations of the D(2,1;\a) current superalgebra and the corresponding energy-momentum tensor are constructed. The related screening currents of the first kind are also presented.Comment: Latex file, 10 page

    A Dnn-Ensemble Method for Error Reduction and Training Data Selection in Dnn based Modeling

    Get PDF
    Deep neural networks (DNNs) have been widely adopted in modeling electromagnetic compatibility (EMC) problems, but the training data acquisition is usually time-consuming through various simulators. This paper presents a powerful approach using an ensemble of DNN s to effectively reduce the training data size in DNN-based modeling problems. A batch of training data with the largest uncertainties is selected using active learning through the variance among the ensemble of DNNs. Subsequently, a greedy sampling algorithm is applied to select a data subset using diversity. Thus, the proposed method can achieve both uncertainty and diversity in data selection. By averaging the outputs of the DNN ensemble, the prediction error can be further reduced. Simple mathematical functions are used to validate the proposed method, and a high-dimensional strip line modeling problem also demonstrates the effectiveness of this DNN-ensemble approach. The proposed method is task agnostic and can be used in other surrogate modeling problems with DNN s

    Symbolic Dynamics Analysis of the Lorenz Equations

    Full text link
    Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to construct symbolic dynamics for systems of ordinary differential equations (ODEs). Numerical study under the guidance of symbolic dynamics is capable to yield global results on chaotic and periodic regimes in systems of dissipative ODEs which cannot be obtained neither by purely analytical means nor by numerical work alone. By constructing symbolic dynamics of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature of the chaotic limits. Applied to the Lorenz equations, this approach has led to a nomenclature, i.e., absolute periods and symbolic names, of stable and unstable periodic orbits for an autonomous system. Symmetry breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision concerns a bug at the end of hlzfig12.ps which prevented the printing of the whole .ps file from page 2

    Geometry and optics calibration of WFCTA prototype telescopes using star light

    Full text link
    The Large High Altitude Air Shower Observatory project is proposed to study high energy gamma ray astronomy ( 40 GeV-1 PeV ) and cosmic ray physics ( 20 TeV-1 EeV ). The wide field of view Cherenkov telescope array, as a component of the LHAASO project, will be used to study energy spectrum and compositions of cosmic ray by measuring the total Cherenkov light generated by air showers and shower maximum depth. Two prototype telescopes have been in operation since 2008. The pointing accuracy of each telescope is crucial to the direction reconstruction of the primary particles. On the other hand the primary energy reconstruction relies on the shape of the Cherenkov image on the camera and the unrecorded photons due to the imperfect connections between photomultiplier tubes. UV bright stars are used as point-like objects to calibrate the pointing and to study the optical properties of the camera, the spot size and the fractions of unrecorded photons in the insensitive areas of the camera.Comment: 5 pages, 6 figures, submitted to Chinese Physics
    corecore