420 research outputs found

    Effects of Antibacterial Peptide Extracted from Bacillus subtilis fmbJ on the Growth, Physiological Response and Disease Resistance of Megalobrama amblycephala

    Get PDF
    The effects of an antibacterial peptide obtained from Bacillus subtilis fmbJ on growth, serum lysozyme complements 3 and 4, total protein content, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total antioxidative capacity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and disease resistance of Wuchang bream (Megalobrama amblycephala) were examined. Fish were randomly divided into five groups: a control group which was fed a basic diet, and four groups fed the basic diet supplemented with 0.1%, 0.2%, 0.4%, or 0.8% antibacterial peptide. At eight weeks, M. amblycephala fed the diet containing 0.2% antibacterial peptide had higher serum lysozyme activity, complement 3 and 4 contents, and SOD activity than the control fish, but lower serum MDA content and AST activity. Fish fed the 0.4% diet had higher weight gain rate, serum lysozyme activity, complement 4 content, total antioxidative capacity, and total protein than the control, and lower serum ALT activity. Feed conversion ratios of fish fed the 0.2% or 0.4% diets were lower than those of control fish. Artificial infection with Aeromonas hydrophila resulted in 93% cumulative mortality in the control group, and 61-84% in the groups fed the 0.2% or 0.4% diets. The present study suggests that feed supplementation with 0.2-0.4% antibacterial peptides can stimulate immunity, increase resistance to pathogenic infection, and promote growth in M. amblycephala

    Quantum interface between frequency-uncorrelated down-converted entanglement and atomic-ensemble quantum memory

    Full text link
    Photonic entanglement source and quantum memory are two basic building blocks of linear-optical quantum computation and long-distance quantum communication. In the past decades, intensive researches have been carried out, and remarkable progress, particularly based on the spontaneous parametric down-converted (SPDC) entanglement source and atomic ensembles, has been achieved. Currently, an important task towards scalable quantum information processing (QIP) is to efficiently write and read entanglement generated from a SPDC source into and out of an atomic quantum memory. Here we report the first experimental realization of a quantum interface by building a 5 MHz frequency-uncorrelated SPDC source and reversibly mapping the generated entangled photons into and out of a remote optically thick cold atomic memory using electromagnetically induced transparency. The frequency correlation between the entangled photons is almost fully eliminated with a suitable pump pulse. The storage of a triggered single photon with arbitrary polarization is shown to reach an average fidelity of 92% for 200 ns storage time. Moreover, polarization-entangled photon pairs are prepared, and one of photons is stored in the atomic memory while the other keeps flying. The CHSH Bell's inequality is measured and violation is clearly observed for storage time up to 1 microsecond. This demonstrates the entanglement is stored and survives during the storage. Our work establishes a crucial element to implement scalable all-optical QIP, and thus presents a substantial progress in quantum information science.Comment: 28 pages, 4 figures, 1 tabl

    Distribution of nucleosides in populations of Cordyceps cicadae

    Get PDF
    A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89-5,678.21 mu g/g in 10 populations of C. cicadae, 1,369.80-3,941.64 mu g/g in sclerotium. The average contents of the 10 analytes were 4,392.37 mu g/g and 3,016.06 mu/g in coremium and sclerotium, respectively. The coefficient of variation (CV) of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides' distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06%) corresponded to the populations
    corecore