17,830 research outputs found

    Modulation stabilization of Bloch oscillations of two-component Bose-Einstein condensates in optical lattices

    Full text link
    We study the Bloch oscillations (BOs) of two-component Bose-Einstein condensates (BECs) trapped in spin-dependent optical lattices. Based on the derived equations of motion of the wave packet in the basis of localized wave functions of the lattice sites, the damping effect induced by the intercomponent and intracomponent interactions to the BOs is explored analytically and numerically. We also show that such damping of the BOs can be suppressed entirely if all the atom-atom interactions are modulated synchronously and harmonically in time with suitable frequency via the Feshbach resonance. When the intercomponent and the intracomponent interactions have inverse signs, we find that the long-living BOs and even the revival of the BOs can be achieved via only statically modulating the configuration of optical lattices. The results provide a valuable guidance for achieving long-living BOs in the two-component BEC system by the Feshbach resonances and manipulating the configuration of the optical lattices.Comment: 13 pages in IOP preprint style, 5 figure

    Towards large-Chern-number topological phases by periodic quenching

    Full text link
    Topological phases with large Chern numbers have important implications. They were previously predicted to exist by considering fabricated long-range interactions or multi-layered materials. Stimulated by recent wide interests in Floquet topological phases, here we propose a scheme to engineer large-Chern-number phases with ease by periodic quenching. Using a two-band system as an example, we theoretically show how a variety of topological phases with widely tunable Chern numbers can be generated by periodic quenching between two simple Hamiltonians that otherwise give low Chern numbers. The obtained large Chern numbers are explained through the emergence of multiple Dirac cones in the Floquet spectra. The transition lines between different topological phases in the two-band model are also explicitly found, thus establishing a class of easily solvable but very rich systems useful for further understandings and applications of topological phases in periodically driven systems.Comment: 9 pages and 6 figure

    Kerr-Sen Black Hole as Accelerator for Spinning Particles

    Full text link
    It has been proved that arbitrarily high-energy collision between two particles can occur near the horizon of an extremal Kerr black hole as long as the energy EE and angular momentum LL of one particle satisfies a critical relation, which is called the BSW mechanism. Previous researchers mainly concentrate on geodesic motion of particles. In this paper, we will take spinning particle which won't move along a timelike geodesic into our consideration, hence, another parameter ss describing the particle's spin angular momentum was introduced. By employing the Mathisson-Papapetrou-Dixon equation describing the movement of spinning particle, we will explore whether a Kerr-Sen black hole which is slightly different from Kerr black hole can be used to accelerate a spinning particle to arbitrarily high energy. We found that when one of the two colliding particles satisfies a critical relation between the energy EE and the total angular momentum JJ, or has a critical spinning angular momentum scs_c, a divergence of the center-of-mass energy EcmE_{cm} will be obtained.Comment: Latex,17 pages,1 figure,minor revision,accepted by PR
    corecore