379 research outputs found

    The Effect of Negative Poisson’s Ratio Polyurethane Scaffolds for Articular Cartilage Tissue Engineering Applications

    Get PDF
    An auxetic polyurethane (PU) scaffold was prepared to investigate chondrocyte proliferation under compressive stimulation for cartilage regeneration. To give a negative Poisson’s ratio to the PU scaffold, volumetric compression with a 3 : 1 ratio was applied during heat treatment. For the control PU scaffold, the Poisson’s ratio was 0.9 ± 0.25 with elongation at 20% of the strain range. Poisson’s ratio for experimental specimens was approximately −0.4 ± 0.12 under the same conditions. In cell proliferation tests, cells were cultivated within the prepared scaffold under compression with a 20% strain range. With a 20% strain range elongation, the compressive load was approximately 0.3 N. The experimental group showed a 1.3 times higher cellular proliferation rate than that of the control group after 3 days in culture. At day 5 of culture, however, the rate of proliferation of the control group increased so that there was no significant difference between groups. However, collagen content (produced by the cells) in the cell-proliferated medium was 1.5 times higher in the experimental group after 5 days in culture. This may have been due to the effectiveness of the auxetic structure of the scaffold. An isotropic compressive load was transmitted to the cells due to the negative Poisson ratio of the scaffold

    Ultrathin titania coating for high-temperature stable SiO2/Pt nanocatalysts

    Get PDF
    The facile synthesis of silica supported platinum nanoparticles with ultrathin titania coating to enhance metal-support interactions suitable for high temperature reactions is reported, as thermal and structure stability of metal nanoparticles is important for catalytic reactions.close8

    Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth

    Full text link
    In situ reflective high-energy electron diffraction (RHEED) is widely used to monitor the surface crystalline state during thin-film growth by molecular beam epitaxy (MBE) and pulsed laser deposition. With the recent development of machine learning (ML), ML-assisted analysis of RHEED videos aids in interpreting the complete RHEED data of oxide thin films. The quantitative analysis of RHEED data allows us to characterize and categorize the growth modes step by step, and extract hidden knowledge of the epitaxial film growth process. In this study, we employed the ML-assisted RHEED analysis method to investigate the growth of 2D thin films of transition metal dichalcogenides (ReSe2) on graphene substrates by MBE. Principal component analysis (PCA) and K-means clustering were used to separate statistically important patterns and visualize the trend of pattern evolution without any notable loss of information. Using the modified PCA, we could monitor the diffraction intensity of solely the ReSe2 layers by filtering out the substrate contribution. These findings demonstrate that ML analysis can be successfully employed to examine and understand the film-growth dynamics of 2D materials. Further, the ML-based method can pave the way for the development of advanced real-time monitoring and autonomous material synthesis techniques.Comment: 21 pages, 4 figure

    Metformin acts as a dual glucose regulator in mouse brain

    Get PDF
    Aims: Metformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain.Materials and methods: We investigated the role of metformin in peripheral glucose regulation by directly administering metformin intracerebroventricularly in mice. The effect of centrally administered metformin (central metformin) on peripheral glucose regulation was evaluated by oral or intraperitoneal glucose, insulin, and pyruvate tolerance tests. Hepatic gluconeogenesis and gastric emptying were assessed to elucidate the underlying mechanisms. Liver-specific and systemic sympathetic denervation were performed.Results: Central metformin improved the glycemic response to oral glucose load in mice compared to that in the control group, and worsened the response to intraperitoneal glucose load, indicating its dual role in peripheral glucose regulation. It lowered the ability of insulin to decrease serum glucose levels and worsened the glycemic response to pyruvate load relative to the control group. Furthermore, it increased the expression of hepatic G6pc and decreased the phosphorylation of STAT3, suggesting that central metformin increased hepatic glucose production. The effect was mediated by sympathetic nervous system activation. In contrast, it induced a significant delay in gastric emptying in mice, suggesting its potent role in suppressing intestinal glucose absorption.Conclusion: Central metformin improves glucose tolerance by delaying gastric emptying through the brain-gut axis, but at the same time worsens it by increasing hepatic glucose production via the brain-liver axis. However, with its ordinary intake, central metformin may effectively enhance its glucose-lowering effect through the brain-gut axis, which could surpass its effect on glucose regulation via the brain-liver axis

    Highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cells

    Get PDF
    We report the preparation of highly interconnected ordered mesoporous carbon-carbon nanotube nanocomposites which show Pt-like dye-sensitized solar cell (DSSC) efficiency and remarkable long-term durability as DSSC counter electrodes.close413

    Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries

    Get PDF
    Advanced polymeric binders with unique functions such as improvements in the electronic conduction network, mechanical adhesion, and mechanical durability during cycling have recently gained an increasing amount of attention as a promising means of creating high-performance silicon (Si) anodes in lithium-ion batteries with high energy density levels. In this review, we describe the key challenges of Si anodes, particularly highlighting the recent progress in the area of polymeric binders for Si anodes in cellsopen

    Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Typhoid, which is caused by <it>Salmonella enterica </it>serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of <it>Salmonella </it>have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis.</p> <p>Results</p> <p>We purified OmpA from <it>S. enterica </it>serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system.</p> <p>Conclusions</p> <p>Our findings suggest that OmpA-sal modulates the adaptive immune responses to <it>S. enterica </it>serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective <it>S. enterica </it>serovar Typhimurium vaccines and immunotherapy adjuvant.</p

    Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model

    Get PDF
    To obtain improved efficacy against pancreatic cancer, we investigated the efficacy and safety of a locally-applied 5-fluorouracil (5-FU)-loaded polymeric patch on pancreatic tumors in an orthotopic nude-mouse model. The 5-FU-releasing polymeric patch was produced by 3D printing. After application of the patch, it released the drug slowly for 4 weeks, and suppressed BxPC-3 pancreas cancer growth. Luciferase imaging of BxPC3-Luc cells implanted in the pancreas was performed longitudinally. The drug patch delivered a 30.2 times higher level of 5-FU than an intra-peritoneal (i.p.) bolus injection on day-1. High 5-FU levels were accumulated within one week by the patch. Four groups were compared for efficacy of 5-FU. Drug-free patch as a negative control (Group I); 30% 5-FU-loaded patch (4.8 mg) (Group II); 5-FU i.p. once (4.8 mg) (Group III); 5-FU i.p. once a week (1.2 mg), three times (Group IV). The tumor growth rate was significantly faster in Group I than Group II, III, IV (p=0.047 at day-8, p=0.022 at day-12, p=0.002 at day-18 and p=0.034 at day-21). All mice in Group III died of drug toxicity within two weeks after injection. Group II showed more effective suppression of tumor growth than Group IV (p=0.018 at day-12 and p=0.017 at day-21). Histological analysis showed extensive apoptosis in the TUNEL assay and by Ki -67 staining. Western blotting confirmed strong expression of cleaved caspase-3 in Group II. No significant changes were found hematologically and histologically in the liver, kidney and spleen in Groups I, II, IV but were found in Group III.113Ysciescopu
    corecore