19,911 research outputs found

    Sequential Selection of Correlated Ads by POMDPs

    Full text link
    Online advertising has become a key source of revenue for both web search engines and online publishers. For them, the ability of allocating right ads to right webpages is critical because any mismatched ads would not only harm web users' satisfactions but also lower the ad income. In this paper, we study how online publishers could optimally select ads to maximize their ad incomes over time. The conventional offline, content-based matching between webpages and ads is a fine start but cannot solve the problem completely because good matching does not necessarily lead to good payoff. Moreover, with the limited display impressions, we need to balance the need of selecting ads to learn true ad payoffs (exploration) with that of allocating ads to generate high immediate payoffs based on the current belief (exploitation). In this paper, we address the problem by employing Partially observable Markov decision processes (POMDPs) and discuss how to utilize the correlation of ads to improve the efficiency of the exploration and increase ad incomes in a long run. Our mathematical derivation shows that the belief states of correlated ads can be naturally updated using a formula similar to collaborative filtering. To test our model, a real world ad dataset from a major search engine is collected and categorized. Experimenting over the data, we provide an analyse of the effect of the underlying parameters, and demonstrate that our algorithms significantly outperform other strong baselines

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Real-time Bidding for Online Advertising: Measurement and Analysis

    Get PDF
    The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatically buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.Comment: Accepted by ADKDD '13 worksho
    • …
    corecore