19,911 research outputs found
Sequential Selection of Correlated Ads by POMDPs
Online advertising has become a key source of revenue for both web search
engines and online publishers. For them, the ability of allocating right ads to
right webpages is critical because any mismatched ads would not only harm web
users' satisfactions but also lower the ad income. In this paper, we study how
online publishers could optimally select ads to maximize their ad incomes over
time. The conventional offline, content-based matching between webpages and ads
is a fine start but cannot solve the problem completely because good matching
does not necessarily lead to good payoff. Moreover, with the limited display
impressions, we need to balance the need of selecting ads to learn true ad
payoffs (exploration) with that of allocating ads to generate high immediate
payoffs based on the current belief (exploitation). In this paper, we address
the problem by employing Partially observable Markov decision processes
(POMDPs) and discuss how to utilize the correlation of ads to improve the
efficiency of the exploration and increase ad incomes in a long run. Our
mathematical derivation shows that the belief states of correlated ads can be
naturally updated using a formula similar to collaborative filtering. To test
our model, a real world ad dataset from a major search engine is collected and
categorized. Experimenting over the data, we provide an analyse of the effect
of the underlying parameters, and demonstrate that our algorithms significantly
outperform other strong baselines
The EM Algorithm and the Rise of Computational Biology
In the past decade computational biology has grown from a cottage industry
with a handful of researchers to an attractive interdisciplinary field,
catching the attention and imagination of many quantitatively-minded
scientists. Of interest to us is the key role played by the EM algorithm during
this transformation. We survey the use of the EM algorithm in a few important
computational biology problems surrounding the "central dogma"; of molecular
biology: from DNA to RNA and then to proteins. Topics of this article include
sequence motif discovery, protein sequence alignment, population genetics,
evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Real-time Bidding for Online Advertising: Measurement and Analysis
The real-time bidding (RTB), aka programmatic buying, has recently become the
fastest growing area in online advertising. Instead of bulking buying and
inventory-centric buying, RTB mimics stock exchanges and utilises computer
algorithms to automatically buy and sell ads in real-time; It uses per
impression context and targets the ads to specific people based on data about
them, and hence dramatically increases the effectiveness of display
advertising. In this paper, we provide an empirical analysis and measurement of
a production ad exchange. Using the data sampled from both demand and supply
side, we aim to provide first-hand insights into the emerging new impression
selling infrastructure and its bidding behaviours, and help identifying
research and design issues in such systems. From our study, we observed that
periodic patterns occur in various statistics including impressions, clicks,
bids, and conversion rates (both post-view and post-click), which suggest
time-dependent models would be appropriate for capturing the repeated patterns
in RTB. We also found that despite the claimed second price auction, the first
price payment in fact is accounted for 55.4% of total cost due to the
arrangement of the soft floor price. As such, we argue that the setting of soft
floor price in the current RTB systems puts advertisers in a less favourable
position. Furthermore, our analysis on the conversation rates shows that the
current bidding strategy is far less optimal, indicating the significant needs
for optimisation algorithms incorporating the facts such as the temporal
behaviours, the frequency and recency of the ad displays, which have not been
well considered in the past.Comment: Accepted by ADKDD '13 worksho
- …