13,351 research outputs found
On the diameter of the Kronecker product graph
Let and be two undirected nontrivial graphs. The Kronecker
product of and denoted by with vertex set
, two vertices and are adjacent if and
only if and . This paper presents a
formula for computing the diameter of by means of the
diameters and primitive exponents of factor graphs.Comment: 9 pages, 18 reference
Shakeout: A New Approach to Regularized Deep Neural Network Training
Recent years have witnessed the success of deep neural networks in dealing
with a plenty of practical problems. Dropout has played an essential role in
many successful deep neural networks, by inducing regularization in the model
training. In this paper, we present a new regularized training approach:
Shakeout. Instead of randomly discarding units as Dropout does at the training
stage, Shakeout randomly chooses to enhance or reverse each unit's contribution
to the next layer. This minor modification of Dropout has the statistical
trait: the regularizer induced by Shakeout adaptively combines , and
regularization terms. Our classification experiments with representative
deep architectures on image datasets MNIST, CIFAR-10 and ImageNet show that
Shakeout deals with over-fitting effectively and outperforms Dropout. We
empirically demonstrate that Shakeout leads to sparser weights under both
unsupervised and supervised settings. Shakeout also leads to the grouping
effect of the input units in a layer. Considering the weights in reflecting the
importance of connections, Shakeout is superior to Dropout, which is valuable
for the deep model compression. Moreover, we demonstrate that Shakeout can
effectively reduce the instability of the training process of the deep
architecture.Comment: Appears at T-PAMI 201
- β¦