10 research outputs found

    Effects of Bladder Training and/or Tolterodine in Female Patients with Overactive Bladder Syndrome: A Prospective, Randomized Study

    Get PDF
    We compared the effects of bladder training and/or tolterodine as first line treatment in female patients with overactive bladder (OAB). One hundred and thirty-nine female patients with OAB were randomized to treatment with bladder training (BT), tolterodine (To, 2 mg twice daily) or both (Co) for 12 weeks. Treatment efficacy was measured by micturition diary, urgency scores and patients' subjective assessment of their bladder condition. Mean frequency and nocturia significantly decreased in all treatment groups, declining 25.9% and 56.1%, respectively, in the BT group; 30.2% and 65.4%, respectively, in the To group; and 33.5% and 66.3%, respectively in the Co group (p<0.05 for each). The decrease in frequency was significantly greater in the Co group than in the BT group (p<0.05). Mean urgency score decreased by 44.8%, 62.2% and 60.2% in the BT, To, and Co groups, respectively, and the improvement was significantly greater in the To and Co groups than in the BT group (p<0.05 for each). Although BT, To and their combination were all effective in controlling OAB symptoms, combination therapy was more effective than either method alone. Tolterodine alone may be instituted as a first-line therapy, but may be more effective when combined with bladder training

    Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

    Get PDF
    Copy number variations (CNVs), important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Threatening cancer with nanoparticle aided combination oncotherapy

    No full text
    corecore