834 research outputs found
InstructDoc: A Dataset for Zero-Shot Generalization of Visual Document Understanding with Instructions
We study the problem of completing various visual document understanding
(VDU) tasks, e.g., question answering and information extraction, on real-world
documents through human-written instructions. To this end, we propose
InstructDoc, the first large-scale collection of 30 publicly available VDU
datasets, each with diverse instructions in a unified format, which covers a
wide range of 12 tasks and includes open document types/formats. Furthermore,
to enhance the generalization performance on VDU tasks, we design a new
instruction-based document reading and understanding model, InstructDr, that
connects document images, image encoders, and large language models (LLMs)
through a trainable bridging module. Experiments demonstrate that InstructDr
can effectively adapt to new VDU datasets, tasks, and domains via given
instructions and outperforms existing multimodal LLMs and ChatGPT without
specific training.Comment: Accepted by AAAI2024; project page:
https://github.com/nttmdlab-nlp/InstructDo
Enhancement by streptozotocin of O−2 radical generation by the xanthine oxidase system of pancreatic β-cells
AbstractSpin-trapping techniques and electron spin resonance (ESR) spectroscopy were used to study the relationship between the effect of streptozotocin (STZ) on pancreatic β-cells and free radical formation by these cells. Results showed that STZ enhanced generation of the DMPO-OH radical adduct, which is a degradation product of the superoxide anion (O−2) in the presence of cellular components, in a hypoxanthine-xanthine oxidase (XOD) system with a homogenate of β-cells. This enhancing effect was also observed in a system without cellular components; STZ increased the signal height due to the O−2 radical in a concentration-dependent manner and caused a maximum of 150% enhancement at a concentration of 1.5 mM. Thus, STZ seemed to enhance the generation of the O−2 radical in the XOD system, probably by some mechanism of its interaction with XOD. Pancreatic β-cells exhibited a high XOD activity and a very low superoxide dismutase activity. Therefore, the present result supports the possibility that the cytotoxic effect of STZ is closely related to free radical generation in pancreatic β-cells
アポトーシス過程におけるリボソームの構造変化 : ドキソルビシンで処理したJurkat細胞でのリボソームタンパク質の分解と局在変化
取得学位:博士(薬学),学位授与番号:博甲第473号,学位授与年月日:平成14年3月22日,学位授与年:200
装着型サイバニック・インタフェースによる主体的な自己体験の変容
この博士論文は全文公表に適さないやむを得ない事由があり要約のみを公表していましたが、解消したため、令和3(2021)年1月18日に全文を公表しました。筑波大学 (University of Tsukuba)201
Hysteretic Tricolor Electrochromic Systems Based on the Dynamic Redox Properties of Unsymmetrically Substituted Dihydrophenanthrenes and Biphenyl-2,2 '-Diyl Dications: Efficient Precursor Synthesis by a Flow Microreactor Method
A series of biphenyl-2, 2'-diylbis(diarylmethanol)s 3, which have two kinds of aryl groups at the bay region, were efficiently obtained by integrated flow microreactor synthesis. The diols 3NO/NX are the precursors of unsymmetric biphenylic dications 2NO/NX^[2+] which are transformed into the corresponding dihydrophenanthrenes 1NO/NX via 2NO/NX^[+•] upon reduction, when they exhibit two-stage color changes. On the other hand, the steady-state concentration of the intermediate 2NO/NX^[+•] is negligible during the oxidation of 1NO/NX to 2NO/NX^[2+], which reflects unique tricolor electrochromicity with a hysteretic pattern of color change [color 1→color 2→color 3→color 1]
Ultra-high temperature Soret effect in a silicate melt: SiO2 migration to cold side
The Soret effect, temperature gradient driven diffusion, in silicate melts
has been investigated intensively in the earth sciences from the 1980s. The
SiO2 component is generally concentrated in the hotter region of silicate melts
under a temperature gradient. Here, we report that at ultra-high temperatures
above approximately 3000 K, SiO2 becomes concentrated in the colder region of
the silicate melts under a temperature gradient. The interior of an
aluminosilicate glass (63.3SiO2-16.3Al2O3-20.4CaO(mol%)) was irradiated with a
250 kHz femtosecond laser pulse for local heating. SiO2 migrated to the colder
region during irradiation with an 800 pulse (3.2 ms irradiation). The
temperature analysis indicated that migration to the colder region occurred
above 3060 K. In the non-equilibrium molecular dynamics (NEMD) simulation, SiO2
migrated to the colder region under a temperature gradient, which had an
average temperature of 4000 K; this result supports the experimental result.
SiO2 exhibited a tendency to migrate to the colder region at 2400 K in both the
NEMD and experimental study. The second-order like phase transition was
observed at ~ 2000-3400 K when calculated using MD without a temperature
gradient. Therefore, the second-order phase transition could be related to the
migration of SiO2 to colder region. However, the detailed mechanism has not
been elucidated
CCN2 as a Novel Molecule Supporting Energy Metabolism of Chondrocytes
CCN2/connective tissue growth factor (CTGF) is a unique molecule that promotes both chondrocytic differentiation and proliferation through its matricellular interaction with a number of extracellular biomolecules. This apparently contradictory functional property of CCN2 suggests its certain role in basic cellular activities such as energy metabolism, which is required for both proliferation and differentiation. Comparative metabolomic analysis of costal chondrocytes isolated from wild-type and Ccn2-null mice revealed overall impaired metabolism in the latter. Among the numerous metabolites analyzed, stable reduction in the intracellular level of ATP, GTP, CTP, or UTP was observed, indicating a profound role of CCN2 in energy metabolism. Particularly, the cellular level of ATP was decreased by more than 50% in the Ccn2-null chondrocytes. The addition of recombinant CCN2 (rCCN2) to cultured Ccn2-null chondrocytes partly redeemed the cellular ATP level attenuated by Ccn2 deletion. Next, in order to investigate the mechanistic background that mediates the reduction in ATP level in these Ccn2-null chondrocytes, we performed transcriptome analysis. As a result, several metabolism-associated genes were found to have been up-regulated or down-regulated in the mutant mice. Up-regulation of a number of ribosomal protein genes was observed upon Ccn2 deletion, whereas a few genes required for aerobic and anaerobic ATP production were down-regulated in the Ccn2-null chondrocytes. Among such genes, reduction in the expression of the enolase 1 gene was of particular note. These findings uncover a novel functional role of CCN2 as a metabolic supporter in the growth-plate chondrocytes, which is required for skeletogenesis in mammals
- …