4,422 research outputs found

    Majorana spintronics

    Full text link
    We propose a systematic magnetic-flux-free approach to detect, manipulate and braid Majorana fermions in a semiconductor nanowire-based topological Josephson junction by utilizing the Majorana spin degree of freedom. We find an intrinsic π\pi-phase difference between spin-triplet pairings enforced by the Majorana zeros modes (MZMs) at the two ends of a one-dimensional spinful topological superconductor. This π\pi-phase is identified to be a spin-dependent superconducting phase, referred to as the spin-phase, which we show to be tunable by controlling spin-orbit coupling strength via electric gates. This electric controllable spin-phase not only affects the coupling energy between MZMs but also leads to a fractional Josephson effect in the absence of any applied magnetic flux, which enables the efficient topological qubit readout. We thus propose an all-electrically controlled superconductor-semiconductor hybrid circuit to manipulate MZMs and to detect their non-Abelian braiding statistics properties. Our work on spin properties of topological Josephson effects potentially opens up a new thrust for spintronic applications with Majorana-based semiconductor quantum circuits.Comment: 15 pages, 9 figures, replaced with published versio

    Skeleton-Based Human Action Recognition with Global Context-Aware Attention LSTM Networks

    Full text link
    Human action recognition in 3D skeleton sequences has attracted a lot of research attention. Recently, Long Short-Term Memory (LSTM) networks have shown promising performance in this task due to their strengths in modeling the dependencies and dynamics in sequential data. As not all skeletal joints are informative for action recognition, and the irrelevant joints often bring noise which can degrade the performance, we need to pay more attention to the informative ones. However, the original LSTM network does not have explicit attention ability. In this paper, we propose a new class of LSTM network, Global Context-Aware Attention LSTM (GCA-LSTM), for skeleton based action recognition. This network is capable of selectively focusing on the informative joints in each frame of each skeleton sequence by using a global context memory cell. To further improve the attention capability of our network, we also introduce a recurrent attention mechanism, with which the attention performance of the network can be enhanced progressively. Moreover, we propose a stepwise training scheme in order to train our network effectively. Our approach achieves state-of-the-art performance on five challenging benchmark datasets for skeleton based action recognition
    • …
    corecore