6,299 research outputs found
Factors Affecting Employment and Unemployment for Fresh Graduates in China
The factors such as college reputation, major, and gender, which affect job search prospects of graduates from Shandong Province in China, are studied. A duration model including parametric, semiparametric, and nonparametric approaches is used and yielded several important findings. First, graduates find jobs faster if they come from the research universities. The study shows that economics and management, and engineering graduates find jobs more easily. Other major graduates have no significant difference although they are not more likely to find jobs than the former. Moreover, there is no remarkable gap between female and male graduates
Polyphonic audio tagging with sequentially labelled data using CRNN with learnable gated linear units
Audio tagging aims to detect the types of sound events occurring in an audio
recording. To tag the polyphonic audio recordings, we propose to use
Connectionist Temporal Classification (CTC) loss function on the top of
Convolutional Recurrent Neural Network (CRNN) with learnable Gated Linear Units
(GLU-CTC), based on a new type of audio label data: Sequentially Labelled Data
(SLD). In GLU-CTC, CTC objective function maps the frame-level probability of
labels to clip-level probability of labels. To compare the mapping ability of
GLU-CTC for sound events, we train a CRNN with GLU based on Global Max Pooling
(GLU-GMP) and a CRNN with GLU based on Global Average Pooling (GLU-GAP). And we
also compare the proposed GLU-CTC system with the baseline system, which is a
CRNN trained using CTC loss function without GLU. The experiments show that the
GLU-CTC achieves an Area Under Curve (AUC) score of 0.882 in audio tagging,
outperforming the GLU-GMP of 0.803, GLU-GAP of 0.766 and baseline system of
0.837. That means based on the same CRNN model with GLU, the performance of CTC
mapping is better than the GMP and GAP mapping. Given both based on the CTC
mapping, the CRNN with GLU outperforms the CRNN without GLU.Comment: DCASE2018 Workshop. arXiv admin note: text overlap with
arXiv:1808.0193
Slip of fluid molecules on solid surfaces by surface diffusion
The mechanism of fluid slip on a solid surface has been linked to surface
diffusion, by which mobile adsorbed fluid molecules perform hops between
adsorption sites. However, slip velocity arising from this surface hopping
mechanism has been estimated to be significantly lower than that observed
experimentally. In this paper, we propose a re-adsorption mechanism for fluid
slip. Slip velocity predictions via this mechanism show the improved agreement
with experimental measurements
Negative reflections of electromagnetic waves in chiral media
We investigate the reflection properties of electromagnetic/optical waves in
isotropic chiral media. When the chiral parameter is strong enough, we show
that an unusual \emph{negative reflection} occurs at the interface of the
chiral medium and a perfectly conducting plane, where the incident wave and one
of reflected eigenwaves lie in the same side of the boundary normal. Using such
a property, we further demonstrate that such a conducting plane can be used for
focusing in the strong chiral medium. The related equations under paraxial
optics approximation are deduced. In a special case of chiral medium, the
chiral nihility, one of the bi-reflections disappears and only single reflected
eigenwave exists, which goes exactly opposite to the incident wave. Hence the
incident and reflected electric fields will cancel each other to yield a zero
total electric field. In another word, any electromagnetic waves entering the
chiral nihility with perfectly conducting plane will disappear.Comment: 5 pages, 5 figure
- …