424 research outputs found

    Remarkable enhancement of domain-wall velocity in magnetic nanostripes

    Get PDF
    Remarkable reductions in the velocity of magnetic-field (or electric current)-driven domain-wall (DW) motions in ferromagnetic nanostripes have typically been observed under magnetic fields stronger than the Walker threshold field [N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974)]. This velocity breakdown is known to be associated with an oscillatory dynamic transformation between transverse- and antivortex (or vortex)-type DWs during their propagations. The authors propose, as the result of numerical calculations, a simple means to suppress the velocity breakdown and rather enhance the DW velocities, using a magnetic underlayer of strong perpendicular magnetic anisotropy. This underlayer plays a crucial role in preventing the nucleation of antivortex (or vortex)-type DWs at the edges of nanostripes, in the process of periodic dynamic transformations from the transverse into antivortex- or vortex-type wall. The present study not only offers a promising means of the speedup of DW propagations to levels required for their technological application to ultrafast information-storage or logic devices, but also provides insight into its underlying mechanism.open383

    Origin of the increased velocities of domain wall motions in soft magnetic thin-film nanostripes beyond the velocity-breakdown regime

    Get PDF
    It is known that oscillatory domain-wall (DW) motions in soft magnetic thin-film nanostripes above the Walker critical field lead to a remarkable reduction in the average DW velocities. In a much-higher-field region beyond the velocity-breakdown regime, however, the DW velocities have been found to increase in response to a further increase of the applied field. We report on the physical origin and detailed mechanism of this unexpected behavior. We associate the mechanism with the serial dynamic processes of the nucleation of vortex-antivortex (V-AV) pairs inside the stripe or at its edges, the non-linear gyrotropic motions of Vs and AVs, and their annihilation process. The present results imply that a two-dimensional soliton model is required for adequate interpretation of DW motions in the linear- and oscillatory-DW-motion regimes as well as in the beyond-velocity-breakdown regime.Comment: 16 pages, 3 figure

    Understanding of complex periodic transformations of moving domain walls in magnetic nanostripes

    Get PDF
    The magnetic field (or electric current) driven domain-wall motion in magnetic nanostripes is of considerable interest because it is essential to the performance of information storage and logic devices. One of the currently key problems is to unveil the complex behaviors of oscillatory domain-wall motions under applied magnetic fields stronger than the so-called Walker field, beyond which the velocity of domain walls markedly drops. Here, we provide not only considerably better understandings but also new details of the complex domain-wall motions. In a certain range just above the Walker field, the motions are not chaotic but rather periodic with different unique periodicities of dynamic transformations of a moving domain wall between the different types of its internal structure. Three unique periodicities found, which consist of different types of domain wall that are transformed from type one to another. The transformation periods vary with the field strength and the nanostripe width. This novel phenomenon can be described by the dynamic motion of a limited number of magnetic topological solitons such as vortex and antivortex in nanostripes.Comment: 25 pages, 4 figure

    Quantitative Understanding of Probabilistic Behavior of Living Cells Operated by Vibrant Intracellular Networks

    Get PDF
    For quantitative understanding of probabilistic behaviors of living cells, it is essential to construct a correct mathematical description of intracellular networks interacting with complex cell environments, which has been a formidable task. Here, we present a novel model and stochastic kinetics for an intracellular network interacting with hidden cell environments, employing a complete description of cell state dynamics and its coupling to the system network. Our analysis reveals that various environmental effects on the product number fluctuation of intracellular reaction networks can be collectively characterized by Laplace transform of the time-correlation function of the product creation rate fluctuation with the Laplace variable being the product decay rate. On the basis of the latter result, we propose an efficient method for quantitative analysis of the chemical fluctuation produced by intracellular networks coupled to hidden cell environments. By applying the present approach to the gene expression network, we obtain simple analytic results for the gene expression variability and the environment-induced correlations between the expression levels of mutually noninteracting genes. The theoretical results compose a unified framework for quantitative understanding of various gene expression statistics observed across a number of different systems with a small number of adjustable parameters with clear physical meanings.National Research Foundation of Korea (Grant 2011-0016412)National Research Foundation of Korea (Priority Research Center Program 2009-0093817

    Criterion for transformation of transverse domain wall to vortex or antivortex wall in soft magnetic thin-film nanostripes

    Get PDF
    We report on the criterion for the dynamic transformation of the internal structure of moving domain walls (DWs) in soft magnetic thin-film nanostripes above the Walker threshold field, Hw. In order for the process of transformation from transverse wall (TW) to vortex wall (VW) or antivortex wall (AVW) occurs, the edge-soliton core of the TW-type DW should grow sufficiently to the full width at half maximum of the out-of-plane magnetizations of the core area of the stabilized vortex (or antivortex) by moving inward along the transverse (width) direction. Upon completion of the nucleation of the vortex (antivortex) core, the VW (AVW) is stabilized, and then its core accompanies the gyrotropic motion in a potential well (hill) of a given nanostripe. Field strengths exceeding the Hw, which is the onset field of DW velocity breakdown, are not sufficient but necessary conditions for dynamic DW transformation

    Ultrafast vortex-core reversal dynamics in ferromagnetic nanodots

    Get PDF
    To verify the exact underlying mechanism of ultrafast vortex-core reversal as well as the vortex state stability, we conducted numerical calculations of the dynamic evolution of magnetic vortices in Permalloy cylindrical nanodots under an oscillating in-plane magnetic field over a wide range of the field frequency and amplitude. The calculated results reveal different kinds of the nontrivial dynamic responses of vortices to the driving external field, including the vortex-core reversal. In particular, the results offer insight into the 10 ps scale underlying physics of the ultrafast vortex-core reversal driven by small-amplitude (similar to 10 Oe) oscillating in-plane fields. This work also provides fundamentals of how to effectively manipulate the vortex dynamics as well as the dynamical switching of the vortex-core orientation.open624

    An Angiotensin I Converting Enzyme Polymorphism Is Associated with Clinical Phenotype When Using Differentiation-Syndrome to Categorize Korean Bronchial Asthma Patients

    Get PDF
    In this study, genetic analysis was conducted to investigate the association of angiotensin I converting enzyme (ACE) gene polymorphism with clinical phenotype based on differentiation-syndrome of bronchial asthma patients. Differentiation-syndrome is a traditional Korean medicine (TKM) theory in which patients are classified into a Deficiency Syndrome Group (DSG) and an Excess Syndrome Group (ESG) according to their symptomatic classification. For this study, 110 participants were evaluated by pulmonary function test. Among them, 39 patients were excluded because they refused genotyping. Of the remaining patients, 52 with DSG of asthma (DSGA) and 29 with ESG of asthma (ESGA), as determined by the differentiation-syndrome techniques were assessed by genetic analysis. ACE insertion/deletion (I/D) polymorphism analysis was conducted using polymerase chain reaction (PCR). Student's t, chi-square, Fisher and Hardy-Weinberg equilibrium tests were used to compare groups. No significant differences in pulmonary function were observed between DSGA and ESGA. The genotypic frequency of ACE I/D polymorphism was found to differ slightly between DSGA and ESGA (P = .0495). However, there were no significant differences in allelic frequency observed between DSGA and ESGA (P = .7006, OR = 1.1223). Interestingly, the allelic (P = .0043, OR = 3.4545) and genotypic (P = .0126) frequencies of the ACE I/D polymorphism in female patients differed significantly between DSGA and ESGA. Taken together, the results presented here indicate that the symptomatic classification of DSGA and ESGA by differentiation-syndrome in Korean asthma patients could be useful in evaluation of the pathogenesis of bronchial asthma

    Assessment of the proarrhythmic effects of repurposed antimalarials for COVID-19 treatment using a comprehensive in vitro proarrhythmia assay (CiPA)

    Get PDF
    Due to the outbreak of the SARS-CoV-2 virus, drug repurposing and Emergency Use Authorization have been proposed to treat the coronavirus disease 2019 (COVID-19) during the pandemic. While the efficiency of the drugs has been discussed, it was identified that certain compounds, such as chloroquine and hydroxychloroquine, cause QT interval prolongation and potential cardiotoxic effects. Drug-induced cardiotoxicity and QT prolongation may lead to life-threatening arrhythmias such as torsades de pointes (TdP), a potentially fatal arrhythmic symptom. Here, we evaluated the risk of repurposed pyronaridine or artesunate-mediated cardiac arrhythmias alone and in combination for COVID-19 treatment through in vitro and in silico investigations using the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative. The potential effects of each drug or in combinations on cardiac action potential (AP) and ion channels were explored using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and Chinese hamster ovary (CHO) cells transiently expressing cardiac ion channels (Nav1.5, Cav1.2, and hERG). We also performed in silico computer simulation using the optimized O’Hara-Rudy human ventricular myocyte model (ORd model) to classify TdP risk. Artesunate and dihydroartemisinin (DHA), the active metabolite of artesunate, are classified as a low risk of inducing TdP based on the torsade metric score (TMS). Moreover, artesunate does not significantly affect the cardiac APs of hiPSC-CMs even at concentrations up to 100 times the maximum serum concentration (Cmax). DHA modestly prolonged at APD90 (10.16%) at 100 times the Cmax. When considering Cmax, pyronaridine, and the combination of both drugs (pyronaridine and artesunate) are classified as having an intermediate risk of inducing TdP. However, when considering the unbound concentration (the free fraction not bound to carrier proteins or other tissues inducing pharmacological activity), both drugs are classified as having a low risk of inducing TdP. In summary, pyronaridine, artesunate, and a combination of both drugs have been confirmed to pose a low proarrhythmogenic risk at therapeutic and supratherapeutic (up to 4 times) free Cmax. Additionally, the CiPA initiative may be suitable for regulatory use and provide novel insights for evaluating drug-induced cardiotoxicity
    corecore