1,345 research outputs found

    Breakdown of the interlayer coherence in twisted bilayer graphene

    Full text link
    Coherent motion of the electrons in the Bloch states is one of the fundamental concepts of the charge conduction in solid state physics. In layered materials, however, such a condition often breaks down for the interlayer conduction, when the interlayer coupling is significantly reduced by e.g. large interlayer separation. We report that complete suppression of coherent conduction is realized even in an atomic length scale of layer separation in twisted bilayer graphene. The interlayer resistivity of twisted bilayer graphene is much higher than the c-axis resistivity of Bernal-stacked graphite, and exhibits strong dependence on temperature as well as on external electric fields. These results suggest that the graphene layers are significantly decoupled by rotation and incoherent conduction is a main transport channel between the layers of twisted bilayer graphene.Comment: 5 pages, 3 figure

    Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity

    Get PDF
    The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified red-crowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH, RPA1, PHAX, HNMT, HS2ST1, PPCDC, PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species

    Supersymetry on the Noncommutative Lattice

    Get PDF
    Built upon the proposal of Kaplan et.al. [hep-lat/0206109], we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan {\sl et.al.} We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity.Comment: JHEP style, 1+22 pages, no figure, v2: two references added, v3: three more references adde

    A highly active and durable lanthanum strontium cobalt ferrite cathode for Intermediate-Temperature solid Oxide fuel cel

    Get PDF
    Solid oxide fuel cells (SOFCs) are promising techniques for high energy efficiency, fuel flexibility, and low pollutant emissions. For commercialization of SOFCs, it is required to decrease the operating temperature. At this intermediate temperature region, the cathodic polarization resistance significant due to the thermally activated oxygen reduction reaction (ORR). To compensate this, highly active cathode materials have been considered and lanthanum strontium cobalt ferrite (LSCF6428, La0.6Sr0.4Co0.2Fe0.8O3-δ) has been attracted as a cathode material for SOFCs because of its high mixed electronic and ionic conducting (MIEC) nature. However, one of the major concerns of LSCF6428 is the degradation during the long-term operation. Currently, Sr segregation has been reported as one of the major reasons for the LSCF degradation. In this study, we investigated LSCF2882 (La0.2Sr0.8Co0.8Fe0.2O3-δ) and compared with LSCF6428 as a SOFC cathode. X-ray diffraction (XRD) and Rietveld refinement were applied to analyze phase structures. By electrical conductivity relaxation (ECR) technique, Oxygen surface exchange coefficients (kchem) and chemical diffusion coefficients (Dchem) of LSCF2882 were evaluated and we observed enhancements compare to LSCF6428. For interpretation of enhanced oxygen transport kinetics, we tried to visualize the interstitial oxygen conduction pathways and the bond valence sum (BVS) mapping method was utilized by Valence program. BVS mapping results show clearly demonstrating the 3D network of the interstitial pathways at 600oC in LSCF2882. Electrochemical performances were investigated by EIS (Electrochemical Impedance Spectroscopy) and single cell performance was also evaluated. In addition, long-term stability test was performed for over 500 hours. LSCF2882 showed better performances and it exhibited no degradation during the stability test. Please click Additional Files below to see the full abstract

    Size Dependence of Metal-Insulator Transition in Stoichiometric Fe3O4 Nanocrystals

    Full text link
    Magnetite (Fe3O4) is one of the most actively studied materials with a famous metal-insulator transition (MIT), so-called the Verwey transition at around 123 K. Despite the recent progress in synthesis and characterization of Fe3O4 nanocrystals (NCs), it is still an open question how the Verwey transition changes on a nanometer scale. We herein report the systematic studies on size dependence of the Verwey transition of stoichiometric Fe3O4 NCs. We have successfully synthesized stoichiometric and uniform-sized Fe3O4 NCs with sizes ranging from 5 to 100 nm. These stoichiometric Fe3O4 NCs show the Verwey transition when they are characterized by conductance, magnetization, cryo-XRD, and heat capacity measurements. The Verwey transition is weakly size-dependent and becomes suppressed in NCs smaller than 20 nm before disappearing completely for less than 6 nm, which is a clear, yet highly interesting indication of a size effect of this well-known phenomena. Our current work will shed new light on this ages-old problem of Verwey transition.Comment: 18 pages, 4 figures, Nano Letters (accepted

    Age constraints for an M31 globular cluster from SEDs-fit

    Get PDF
    We have constrained the age of the globular cluster S312 in the Andromeda galaxy (M31) by comparing its multicolor photometry with theoretical stellar population synthesis models. This is both a check on the age of this globular cluster, as well a check on our methodology. Main-sequence photometry has been the most direct method for determining the age of a star cluster. S312 was observed as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from 1995 February to 2003 December. The photometry of BATC images for S312 was taken with 9 intermediate-band filters covering 5000-10000\AA. Combined with photometry in the near-ultraviolet (NUV) of {\sl GALEX}, broad-band UBVRUBVR and infrared JHKsJHK_s of 2MASS, we obtained the accurate spectral energy distributions (SEDs) of S312 from 2267-20000\AA. A quantitative comparison to simple stellar population models yields an age of 9.50.99+1.159.5_{-0.99}^{+1.15} Gyr, which is in very good agreement with the previous determination by main-sequence photometry. S312 has a mass of 9.8±1.85×105M9.8\pm{1.85}\times 10^5 \rm M_\odot, and is a medium-mass globular cluster in M31. By analysis of errors of ages determined based on the SED fitting method of this paper, secure age constraints are derived with errors of <3< 3 Gyr for ages younger than 9 Gyr. In fact, the theoretical SEDs are not sensitive to the variation of age for ages greater than 10\sim 10 Gyr. Therefore, for globular clusters as old as the majority of the Galactic GCs, our method do not distinguish them accurately. We emphasize that our results show that even with multiband photometry spanning NUV to KsK_s, our age constraints from SED fitting are distressingly uncertain, which has implications for age derivations in extragalactic globular cluster systems.Comment: Accepted for Publication in ApJ, 9 pages, 5 figure
    corecore