10,378 research outputs found

    4p states and X-Ray Spectroscopy

    Full text link
    The 4p states in transition metals and their compounds usually play minor roles on their physical quantities. Recent development of resonant x-ray scattering (RXS) at the K-edge of transition metals, however, casts light on the 4p states, because the signals on orbital and magnetic superlattice spots are brought about by the modulation in the 4p states. The 4p states are extending in solids and thereby sensitive to electronic states at neighboring sites. This characteristic determines the mechanism of RXS that the intensity on the orbital superlattice spots are mainly generated by the lattice distortion and those on magnetic superlattice spots by the coupling of the 4p states with the orbital polarization in the 3d states at neighboring sites. Taking up typical examples for orbital and magnetic RXS, we demonstrate these mechanisms on the basis of the band structure calculation. Finally, we study the MCD spectra at the K-edge, demonstrating that the same mechanism as the magnetic RXS is working.Comment: 9 pages, 9 figures, submitted to Physica Scripta (comment

    SUSY-QCD Corrections to W±HW^{\pm}H^{\mp} Associated Production at the CERN Large Hadron Collider

    Full text link
    We calculate the SUSY-QCD corrections to the inclusive total cross sections of the associated production processes ppW±H+Xpp\to W^{\pm}H^{\mp}+X in the Minimal Supersymmetric Standard Model(MSSM) at the CERN Large Hadron Collider(LHC). The SUSY-QCD corrections can increase and decrease the total cross sections depending on the choice of the SUSY parameters. When μ<0\mu<0 the SUSY-QCD corrections increase the leading-order (LO) total cross sections significantly for large tanβ\beta (40\sim 40), which can exceed 10% and have the opposite sign with respect to the QCD and the SUSY-EW corrections, and thus cancel with them to some extent. Moreover, we also investigate the effects of the SUSY-QCD on the differential distribution of cross sections in transverse momentum pTp_T and rapidity Y of W-boson, and the invariant mass MW+HM_{W^+H^-}.Comment: 24 pages, 10 figures; minor changes in references; two figures and the corresponding disccusions added; a version to appear in PR

    Cosmic ray spectral hardening due to dispersion in the source injection spectra

    Full text link
    Recent cosmic ray (CR) experiments discovered that the CR spectra experience a remarkable hardening for rigidity above several hundred GV. We propose that this is caused by the superposition of the CR energy spectra of many sources that have a dispersion in the injection spectral indices. Adopting similar parameters as those of supernova remnants derived from the Fermi γ\gamma-ray observations, we can reproduce the observational CR spectra of different species well. This may be interpreted as evidence to support the supernova remnant origin of CRs below the knee. We further propose that the same mechanism may explain the "ankle" of the ultra high energy CR spectrum.Comment: 5 pages, 3 figures and 1 table. Updated with the diffusion propagation model, accepted by Phys. Rev.

    Supersymmetric QCD corrections to single top quark production at hadron colliders

    Get PDF
    We present the calculations of the supersymmetric QCD corrections to the total cross sections for single top production at the Fermilab Tevatron and the CERN Large Hadron Collider in the minimal supersymmetric standard model. Our results show that for the s-channel and t-channel, the supersymmetric QCD corrections are at most about 1%, but for the associated production process, the supersymmetric QCD corrections increase the total cross sections significantly, which can reach about 6% for most values of the parameters, and the supersymmetric QCD corrections should be taken into consideration in the future high precision experimental analysis for top physics.Comment: 33 pages, 19 figures, version to appear in Phys.Rev.

    Theoretical Analysis of Resonant Inelastic X-Ray Scattering Spectra in LaMnO3

    Full text link
    We analyze the resonant inelastic x-ray scattering (RIXS) spectra at the K edge of Mn in the antiferromagnetic insulating manganite LaMnO3. We make use of the Keldysh-type Green-function formalism, in which the RIXS intensity is described by a product of an incident-photon-dependent factor and a density-density correlation function in the 3d states. We calculate the former factor using the 4p density of states given by an ab initio band structure calculation and the latter using a multi-orbital tight-binding model. The ground state of the model Hamiltonian is evaluated within the Hartree-Fock approximation. Correlation effects are treated within the random phase approximation (RPA). We obtain the RIXS intensity in a wide range of energy-loss 2-15 eV. The spectral shape is strongly modified by the RPA correlation, showing good agreement with the experiments. The incident-photon-energy dependence also agrees well with the experiments. The present mechanism that the RIXS spectra arise from band-to-band transitions to screen the core-hole potential is quite different from the orbiton picture previously proposed, enabling a comprehensive understanding of the RIXS spectra.Comment: 20 pages, 10 figures, To be published in PR

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    The role of N(1535)N^*(1535) in ppppϕpp \to pp \phi and πpnϕ\pi^- p \to n \phi reactions

    Full text link
    The near threshold ϕ\phi meson production in proton-proton and πp\pi^- p collisions is studied with the assumption that the production mechanism is due to the sub-NϕN\phi-threshold N(1535)N^*(1535) resonance. The π0\pi^0, η\eta and ρ0\rho^0-meson exchanges for proton-proton collisions are considered. It is shown that the contribution to the ppppϕpp \to pp \phi reaction from the t-channel π0\pi^0 meson exchange is dominant. With a significant N(1535)NϕN^*(1535)N\phi coupling (gN(1535)Nϕ2/4πg^2_{N^*(1535)N \phi}/4 \pi = 0.13), both ppppϕpp \to pp \phi and πpnϕ\pi^- p \to n \phi data are very well reproduced. The significant coupling of the N(1535)N^*(1535) resonance to NϕN \phi is compatible with previous indications of a large ssˉs \bar{s} component in the quark wave function of the N(1535)N^*(1535) resonance and may be the real origin of the significant enhancement of the ϕ\phi production over the naive OZI-rule predictions.Comment: 15 pages, 6 figure
    corecore