2,157 research outputs found

    Cosmological CPT Violation, Baryon/Leptogenesis and CMB Polarization

    Get PDF
    In this paper we study the cosmological CPT-violation and its implications in baryo/leptogenesis and CMB polarization. We propose specifically a variant of the models of gravitational leptogenesis. By performing a global analysis with the Markov Chain Monte Carlo (MCMC) method, we find the current CMB polarization observations from the three-year WMAP (WMAP3) and the 2003 flight of BOOMERANG (B03) data provide a weak evidence for our model. However to verify and especially exclude this type of mechanism for baryo/leptogenesis with cosmological CPT-violation, the future measurements on CMB polarization from PLANCK and CMBpol are necessary.Comment: The version appears in PL

    Probing for the Cosmological Parameters with PLANCK Measurement

    Full text link
    We investigate the constraints on cosmological parameters especially for EoS of dark energy, inflationary parameters, neutrino mass and curvature of universe using simulated Planck data. Firstly we determine cosmological parameters with current observations including ESSENCE, WMAP3, Boomerang-2K2, CBI, VSA, ACBAR, SDSS LRG and 2dFGRS, and take best-fit model as the fiducial model in simulations. In simulations we pay attention to the effects of dynamical dark energy in determination of cosmological parameters. We add simulated SNAP data to do all the simulations. Using present data, we find Quintom dark energy model is mildly favored while \LambdaCDM remains a good fit. In the framework of dynamical dark energy, the constraints on inflationary parameters, m_{\nu} and \Omega_{K} become weak compared with the constraints in \LambdaCDM. Intriguingly, we find that the inflationary models with a "blue" tilt, which are excluded about 2\sigma in \LambdaCDM model, are well within 2\sigma region with the presence of the dynamics of dark energy. The upper limits of neutrino mass are weakened by a factor of 2 (95% C.L.), say, m_{\nu}<1.59 eV and m_{\nu}<1.53 eV for two forms of parametrization of the equation of state of dark energy. The flat universe is a good fit to the current data, namely, |\Omega_{K}|<0.03 (95% C.L.). With the simulated Planck and SNAP data, dynamical dark energy and \LambdaCDM might be distinguished at 4\sigma. And uncertainties of inflationary parameters, m_{\nu} and \Omega_{K} can be reduced obviously. We also constrain the rotation angle \Delta\alpha, denoting possible cosmological CPT violation, with simulated Planck and CMBpol data and find that our results are much more stringent than current constraint and will verify cosmological CPT symmetry with a higher precision. (Abridged)Comment: 15 pages, 8 figures and 3 tables, Accepted for publication in Int.J.Mod.Phys.
    corecore