2,666 research outputs found
A validity argument for the use of scores from a web-search-permitted and web-source-based integrated writing test
The field of language assessment has seen a recent surge of literature on assessment tasks that integrate two or more skills, such as reading and writing. Source-based writing is also gaining much interest in both first and second language studies, with a particular focus on issues relating to source selection and source language use. The purpose of this study is to build a validity argument for the use of scores from a web-search-permitted and web-source-based integrated writing test. Scores from the test are intended to be used as final exam scores in an academic writing course for international undergraduate students at a large research university in the US. The construct that the test is intended to measure is web-researching-to-write or web-source-based writing, which is defined by the course syllabus and teaching/learning activities.
There are seven inferences that make up the validity argument: domain description, evaluation, generalization, explanation, extrapolation, utilization, and implication. This chain of seven inferences connects the target language use domain and observations of performance to scores and leads ultimately to the consequences of test use. Each inference is supported by a warrant, which in turn is supported by one or more assumptions. Each assumption is backed by evidence. Mixed methods were used to collect and analyze data that would become the backing. Data included 48 Camtasia screen capture recordings, 50 test essays, 40 post-test test-taker questionnaire responses, 6 post-test test-taker interviews, 9 follow-up test-taker questionnaire responses, 9 follow-up test-taker interviews, 5 instructor interviews, and documents.
All of the assumptions underlying the seven inferences were at least partially supported by the backing, which means that the overall validity argument can be upheld by the chain of seven inferences. Further research is suggested to produce additional backing in support of the comparatively weaker inferences. This study contributes to validation research in language assessment by providing an example of a validity argument constructed for low-stakes classroom-based testing. Furthermore, the study introduces the web-search-permitted and web-source-based integrated writing test as a test that has potential to be adopted by various stakeholders and opens up new possibilities for research on integrated language assessment tasks
Scanning Reduction Strategy in MEG/EEG Beamformer Source Imaging
MEG/EEG beamformer source imaging is a promising approach which can easily address spatiotemporal multi-dipole problems without a priori information on the number of sources and is robust to noise. Despite such promise, beamformer generally has weakness which is degrading localization performance for correlated sources and is requiring of dense scanning for covering all possible interesting (entire) source areas. Wide source space scanning yields all interesting area images, and it results in lengthy computation time. Therefore, an efficient source space scanning strategy would be beneficial in achieving accelerated beamformer source imaging. We propose a new strategy in computing beamformer to reduce scanning points and still maintain effective accuracy (good spatial resolution). This new strategy uses the distribution of correlation values between measurements and lead-field vectors. Scanning source points are chosen yielding higher RMS correlations than the predetermined correlation thresholds. We discuss how correlation thresholds depend on SNR and verify the feasibility and efficacy of our proposed strategy to improve the beamformer through numerical and empirical experiments. Our proposed strategy could in time accelerate the conventional beamformer up to over 40% without sacrificing spatial accuracy
Chloride Transport of High Alumina Cement Mortar Exposed to a Saline Solution
Chloride transport in different types of high alumina cement (HAC) mortar was investigated in this study. Three HAC cement types were used, ranging from 52.0 to 81.1% of aluminum oxides in clinker. For the development of the strength, the setting time of fresh mortar was measured immediately after mixing and the mortar compressive strength was cured in a wet chamber at 25 ± 2°C and then measured at 1–91 days. Simultaneously, to assess the rate of chloride transport in terms of diffusivity, the chloride profile was performed by an exposure test in this study, which was supported by further experimentation including an examination of the pore structure, chloride binding, and chemical composition (X-ray diffraction) analysis. As a result, it was found that an increase in the Al2O3 content in the HAC clinker resulted in an increase in the diffusion coefficient and concentration of surface chloride due to increased binding of chloride. However, types of HAC did not affect the pore distribution in the cement matrix, except for macro pores
Investigation of Enhanced Polygon Wall Boundary Model in PNU-MPS Method
With regard to demonstration of fluid flow, there are two descriptions which are Eulerian description and Lagrangian description. In the field of CFD (Computational Fluid Dynamics), a number of studies relevant to grid method based on Eulerian description have been conducted generally. However, when the grid method is employed to simulate flow field, it is inevitable to give consideration to convection term which generates severe numerical diffusion and fluctuation. To obtain the accuracy of solution, a different type of method based on Lagrangian description is come to the fore. Numerical approaches following Lagrangian description have been called meshfree or particle method. Even though particle method does not accompany convection term and fully satisfies conservation of mass, its studies have not been carried out extensively because it is difficult to implement the boundary conditions correctly due to insufficient number of particles in the vicinity of boundary. It affects directly the stability of flow field and accuracy in computation. In MPS (Moving Particle Semi-implicit) method [1], fixed-type of dummy particles are placed inside wall boundary. By placing extra particles as the wall, it seems to be not easy to satisfy the boundary condition for sharp-edged or extremely thin body configuration. In this study, the enhanced polygon wall boundary model, which was suggested originally by Mitsume et al. [2], is employed to the PNU-MPS (Pusan-National-University-modified MPS) method [3] to improve and stabilize the analysis of fluid flow with arbitrary-shaped body including sharp-edged body configuration without any additional particles. The developed simulation method, called as PNU-MPS-POLY, is adopted to the Couette flow and the lid-driven cavity flow with various corner angles. The present simulation results are validated through comparison with the analytic solutions, the experiments [4], and other simulation results [5,6]
Effect of 5-alpha Reductase Inhibitor on Storage Symptoms in Patients with Benign Prostatic Hyperplasia
Purpose Many patients with benign prostatic hyperplasia (BPH) have storage symptoms. The aim of this study was to evaluate the effects of treatment with a 5-alpha reductase inhibitor (5ARI) on storage symptoms in patients with BPH. Methods This study was conducted in 738 patients with lower urinary tract symptoms secondary to BPH. Patients with a prostate volume of higher than 30 mL on the transrectal ultrasound were classified into two groups: group A, in which an alpha blocker was solely administered for at least 12 months, and group B, in which a combination treatment regimen of an alpha blocker plus 5ARI was used. This was followed by an analysis of the changes in parameters such as the total International Prostate Symptom Score (IPSS), voiding symptom subscore, and storage symptom subscore between the two groups. In addition, we examined whether there was a significant difference between the two groups in the degree of change in storage symptoms between before and after the pharmacological treatment. Results Of the 738 men, 331 had a prostate volume ≥30 mL, including 150 patients in group A and 181 patients in group B. Total IPSS, the voiding symptom subscore, and the storage symptom subscore were significantly lower after treatment than before treatment in both groups (P<0.05). A comparison of the degree of change between before and after treatment, however, showed no significant differences in the storage symptom subscore between the two groups (P>0.05). Conclusions Alpha blocker and 5ARI combination treatment is effective for patients with BPH including storage symptoms. However, 5ARI does not exert a significant effect on storage symptoms in BPH patients
An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding
The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 degrees C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators
SOLiDzipper: A High Speed Encoding Method for the Next-Generation Sequencing Data
Background Next-generation sequencing (NGS) methods pose computational challenges of handling large volumes of data. Although cloud computing offers a potential solution to these challenges, transferring a large data set across the internet is the biggest obstacle, which may be overcome by efficient encoding methods. When encoding is used to facilitate data transfer to the cloud, the time factor is equally as important as the encoding efficiency. Moreover, to take advantage of parallel processing in cloud computing, a parallel technique to decode and split compressed data in the cloud is essential. Hence in this review, we present SOLiDzipper, a new encoding method for NGS data. Methods The basic strategy of SOLiDzipper is to divide and encode. NGS data files contain both the sequence and non-sequence information whose encoding efficiencies are different. In SOLiDzipper, encoded data are stored in binary data block that does not contain the characteristic information of a specific sequence platform, which means that data can be decoded according to a desired platform even in cases of Illumina, Solexa or Roche 454 data. Results The main calculation time using Crossbow was 173 minutes when 40 EC2 nodes were involved. In that case, an analysis preparation time of 464 minutes is required to encode data in the latest DNA compression method like G-SQZ and transmit it on a 183 Mbit/s bandwidth. However, it takes 194 minutes to encode and transmit data with SOLiDzipper under the same bandwidth conditions. These results indicate that the entire processing time can be reduced according to the encoding methods used, under the same network bandwidth conditions. Considering the limited network bandwidth, high-speed, high-efficiency encoding methods such as SOLiDzipper can make a significant contribution to higher productivity in labs seeking to take advantage of the cloud as an alternative to local computing. Availability http://szipper.dinfree.com . Academic/non-profit: Binary available for direct download at no cost. For-profit: Submit request for for-profit license from the web-site
The Singer's Formant and Speaker's Ring Resonance: A Long-Term Average Spectrum Analysis
ObjectivesWe previously showed that a trained tenor's voice has the conventional singer's formant at the region of 3 kHz and another energy peak at 8-9 kHz. Singers in other operatic voice ranges are assumed to have the same peak in their singing and speaking voice. However, to date, no specific measurement of this has been made.MethodsTenors, baritones, sopranos and mezzo sopranos were chosen to participate in this study of the singer's formant and the speaker's ring resonance. Untrained males (n=15) and females (n=15) were included in the control group. Each subject was asked to produce successive /a/ vowel sounds in their singing and speaking voice. For singing, the low pitch was produced in the chest register and the high notes in the head register. We collected the data on the long-term average spectra of the speaking and singing voices of the trained singers and the control groups.ResultsFor the sounds produced from the head register, a significant energy concentration was seen in both 2.2-3.4 kHz and 7.5-8.4 kHz regions (except for the voices of the mezzo sopranos) in the trained singer group when compared to the control groups. Also, the chest register had a significant energy concentration in the 4 trained singer groups at the 2.2-3.1 kHz and 7.8-8.4 kHz. For speaking sound, all trained singers had a significant energy concentration at 2.2-5.3 kHz and sopranos had another energy concentration at 9-10 kHz.ConclusionThe results of this study suggest that opera singers have more energy concentration in the singer's formant/speaker's ring region, in both singing and speaking voices. Furthermore, another region of energy concentration was identified in opera singer's singing sound and in sopranos' speaking sound at 8-9 kHz. The authors believe that these energy concentrations may contribute to the rich voice of trained singers
All-Solution-Processed InGaO 3
We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain
- …