993 research outputs found

    An Active and Soft Hydrogel Actuator to Stimulate Live Cell Clusters by Self-folding

    Get PDF
    The hydrogels are widely used in various applications, and their successful uses depend on controlling the mechanical properties. In this study, we present an advanced strategy to develop hydrogel actuator designed to stimulate live cell clusters by self-folding. The hydrogel actuator consisting of two layers with different expansion ratios were fabricated to have various curvatures in self-folding. The expansion ratio of the hydrogel tuned with the molecular weight and concentration of gel-forming polymers, and temperature-sensitive molecules in a controlled manner. As a result, the hydrogel actuator could stimulate live cell clusters by compression and tension repeatedly, in response to temperature. The cell clusters were compressed in the 0.7-fold decreases of the radius of curvature with 1.0 mm in room temperature, as compared to that of 1.4 mm in 37 degrees C. Interestingly, the vascular endothelial growth factor (VEGF) and insulin-like growth factor-binding protein-2 (IGFBP-2) in MCF-7 tumor cells exposed by mechanical stimulation was expressed more than in those without stimulation. Overall, this new strategy to prepare the active and soft hydrogel actuator would be actively used in tissue engineering, drug delivery, and micro-scale actuators

    Controlled open-cell two-dimensional liquid foam generation for micro- and nanoscale patterning of materials

    Get PDF
    Liquid foam consists of liquid film networks. The films can be thinned to the nanoscale via evaporation and have potential in bottom-up material structuring applications. However, their use has been limited due to their dynamic fluidity, complex topological changes, and physical characteristics of the closed system. Here, we present a simple and versatile microfluidic approach for controlling two-dimensional liquid foam, designing not only evaporative microholes for directed drainage to generate desired film networks without topological changes for the first time, but also microposts to pin the generated films at set positions. Patterning materials in liquid is achievable using the thin films as nanoscale molds, which has additional potential through repeatable patterning on a substrate and combination with a lithographic technique. By enabling direct-writable multi-integrated patterning of various heterogeneous materials in two-dimensional or three-dimensional networked nanostructures, this technique provides novel means of nanofabrication superior to both lithographic and bottom-up state-of-the-art techniques

    Agency Costs And Corporate Financial Policies: A Simultaneous Equations Approach

    Get PDF
    Financial economists have devoted great attention to corporate financial policies, such as the firm’s capital structure. It is also understood that these policies are not determined independently, but jointly with other corporate policies such as dividend policy and ownership structure. The purpose of this paper is to incorporate the pension funding decision into this policy mix. The design and administration of a firm’s pension fund affects the firm because of the size and risks of the pension fund. The degree of funding of a defined benefit plan affects the value and risk of a company’s common shares. This paper simultaneously explains leverage, dividend policy, ownership structure, and pension funding using several independent variables that, based on agency theory, should affect these policies. The results are significant and reinforce the notion of simultaneous determination of corporate policies

    Temperature dependence of Mott transition in VO_2 and programmable critical temperature sensor

    Full text link
    The temperature dependence of the Mott metal-insulator transition (MIT) is studied with a VO_2-based two-terminal device. When a constant voltage is applied to the device, an abrupt current jump is observed with temperature. With increasing applied voltages, the transition temperature of the MIT current jump decreases. We find a monoclinic and electronically correlated metal (MCM) phase between the abrupt current jump and the structural phase transition (SPT). After the transition from insulator to metal, a linear increase in current (or conductivity) is shown with temperature until the current becomes a constant maximum value above T_{SPT}=68^oC. The SPT is confirmed by micro-Raman spectroscopy measurements. Optical microscopy analysis reveals the absence of the local current path in micro scale in the VO_2 device. The current uniformly flows throughout the surface of the VO_2 film when the MIT occurs. This device can be used as a programmable critical temperature sensor.Comment: 4 pages, 3 figure

    Recycling Studies for Swine Manure Slurry Using Multi Process of Aerobic Digestion (MPAD)

    Get PDF
    This study was carried out to investigate the feasibility of Multi Process of Aerobic Digestion (MPAD) for recycling of swine manure slurry as fertilizer. MPAD consisted of three kinds of difference process which are thermophilic aerobic oxidation (TAO) system, lime solidification system, and reverse osmosis (R/O) membrane system. TAO system was studied well previously for decade. The chemical composition of the lime-treated solid fertilizer was as like that organic matter 17.4%, moisture 34.1%, N 0.9%, P 1.7%, K 0.3%, Ca 12.7%, and which was expected to be useful as acid soil amendment material. The concentrated liquid material produced by R/O membrane system was also expected as a good fertilizer for crops production and soil fertility improvement.OtherShinshu University International Symposium 2010 : Sustainable Agriculture and Environment : Asian Networks II  信州大学国際シンポジウム2010 : 持続的農業と環境 : アジアネットワークII ― アジアネットワークの発展をめざして―. 信州大学農学部, 2010, 71-77conference pape
    corecore