19,855 research outputs found

    Gulf War Syndrome: A role for organophosphate induced plasticity of locus coeruleus neurons

    Get PDF
    Gulf War syndrome is a chronic multi-symptom illness that has affected about a quarter of the deployed veterans of the 1991 Gulf War. Exposure to prolonged low-level organophosphate insecticides and other toxic chemicals is now thought to be responsible. Chlorpyrifos was one commonly used insecticide. The metabolite of chlorpyrifos, chlorpyrifos oxon, is a potent irreversible inhibitor of acetylcholinesterase, much like the nerve agent Sarin. To date, the target brain region(s) most susceptible to the neuroactive effects of chlorpyrifos oxon have yet to be identified. To address this we tested ability of chlorpyrifos oxon to influence neuronal excitability and induce lasting changes in the locus coeruleus, a brain region implicated in anxiety, substance use, attention and emotional response to stress. Here we used an ex vivo rodent model to identify a dramatic effect of chlorpyrifos oxon on locus coeruleus noradrenergic neuronal activity. Prolonged exposure to chlorpyrifos oxon caused acute inhibition and a lasting rebound excitatory state expressed after days of exposure and subsequent withdrawal. Our findings indicate that the locus coeruleus is a brain region vulnerable to chlorpyrifos oxon-induced neuroplastic changes possibly leading to the neurological symptoms affecting veterans of the Gulf War

    Spin Hall Effect in Atoms

    Get PDF
    We propose an optical means to realize a spin hall effect (SHE) in neutral atomic system by coupling the internal spin states of atoms to radiation. The interaction between the external optical fields and the atoms creates effective magnetic fields that act in opposite directions on "electrically" neutral atoms with opposite spin polarizations. This effect leads to a Landau level structure for each spin orientation in direct analogy with the familiar SHE in semiconductors. The conservation and topological properties of the spin current, and the creation of a pure spin current are discussed.Comment: 4 pages, 2 figure; Final versio

    Near Infrared Reflectance Spectroscopy (NIRS) Determination of Isoflavone Contents for Selected Soybean Accessions

    Get PDF
    Soybean isoflavones are of considerable interest in relation to their possible health effects in human diets. The rapid and economical determination of soybean isoflavone concentrations is essential for the investigation and development of soybean health foods as well as the selection of soybean seeds with optimal isoflavone levels for such foods. Fourier transforms near infrared reflectance spectroscopy (FT-NIRS) calibrations were developed for the rapid and cost-effective analysis of isoflavones in soybean seeds. FT-NIRS measurements were carried out in quadruplicate for 50 soybean lines selected from the USDA Soybean Germplasm Collection. The selected soybean seeds provided a wide range of isoflavone concentrations (from 0.3 to 6.0 mg/g) that is necessary for development of high-quality calibrations. Laboratory reference values of isoflavone composition were obtained by HPLC analysis of extracted soybean powders. Single soybean seeds were selected for each standard sample and were cut in half in order to avoid screening of the isoflavones NIR absorption bands by the seed coat. For comparison purposes, measurements were also made on soybean powders of the same samples. FT -NIR spectra were collected with a spectral range from 4000 to 12000 cm-1 at a resolution of 8 cm-1 on a Perkin-Elmer Spectrum one NTS spectrometer model. This spectrometer is optimized for high sensitivity analysis of single seed composition, being equipped with an NIRA, integrating sphere accessory and an extended range InGaAs detector

    NNLO QCD Corrections to t-channel Single Top-Quark Production and Decay

    Get PDF
    We present a fully differential next-to-next-to-leading order calculation of t-channel single top-quark production and decay at the LHC under narrow-width approximation and neglecting cross-talk between incoming protons. We focus on the fiducial cross sections at 13 TeV, finding that the next-to-next-to-leading order QCD corrections can reach the level of -6%. The scale variations are reduced to the level of a percent. Our results can be used to improve experimental acceptance estimates and the measurements of the single top-quark production cross section and the top-quark electroweak couplings.Comment: 6 pages, 4 figures, version appear on PRD rapid communicatio

    Sociability is decreased following deletion of the _trpc4_ gene

    Get PDF
    Shyness and social anxiety are predominant features of some psychiatric disorders including autism, schizophrenia, anxiety and depression. Understanding the cellular and molecular determinants of sociability may reveal therapeutic approaches to treat individuals with these disorders and improve their quality of life. Previous experiments from our laboratory have identified selective mRNA and protein expression of a nonselective cation channel known as the canonical transient receptor potential channel 4 (TRPC4s) in brain regions implicated in emotional regulation and anxiety. TRPC4 is highly expressed in the corticolimbic regions of the mammalian brain. We hypothesized that robust corticolimbic expression of TRPC4 may regulate the brain’s response to emotion and anxiety resulting in changes in social interaction. Here we test trpc4 gene knockout rats in a model of social anxiety/interaction. We found that the Trpc4 knockout animals spent significantly less time exploring a juvenile intruder rat compared to their wild-type counterparts and Sprague-Dawley (SD) rats. Furthermore, Trpc4 wild-type (Fisher 344) rats explored the juvenile significantly less than the SD rats. These findings indicate that the _trpc4_ gene plays a role in modulating cellular excitability in specific regions of the brain associated sociality and/or anxiety

    NIR Calibrations for Soybean Seeds and Soy Food Composition Analysis: Total Carbohydrates, Oil, Proteins and Water Contents [v.2]

    Get PDF
    Conventional chemical analysis techniques are expensive, time consuming, and often destructive. The non-invasive Near Infrared (NIR) technology was introduced over the last decades for wide-scale, inexpensive chemical analysis of food and crop seed composition (see Williams and Norris, 1987; Wilcox and Cavins, 1995; Buning and Diller, 2000 for reviews of the NIR technique development stage prior to 1998, when Diode Arrays were introduced to NIR). NIR spectroscopic measurements obey Lambert and Beer’s law, and quantitative measurements can be successfully made with high speed and ease of operation. NIR has been used in a great variety of food applications. General applications of products analyzed come from all sectors of the food industry including meats, grains, and dairy products (Shadow, 1998).
Novel NIR calibrations for rapid, reliable and accurate composition analysis of a variety of several soy based foods and bulk soybean seeds were developed and validated in a six-year collaborative project with a large number of different samples (N >~12, 000). The availability of such calibrations is important for establishing NIR as a secondary method for composition analysis of foods and soybeans both in applications and fundamental research
    corecore