7 research outputs found

    Dopamine D\u3csub\u3e1\u3c/sub\u3e-like receptors regulate the α\u3csub\u3e1A\u3c/sub\u3e-adrenergic receptor in human renal proximal tubule cells and D\u3csub\u3e1\u3c/sub\u3e-like dopamine receptor knockout mice

    No full text
    © 2014 the American Physiological Society. The homeostatic control of blood pressure hinges upon the delicate balance between prohypertensinogenic and antihypertensinogenic systems. D1-like dopamine receptors [dopamine D1 and D5 receptors (D1Rs and D5Rs, respectively)] and the a1A-adrenergic receptor (α1A-AR) are expressed in the renal proximal tubule and engender opposing effects on Na+ transport, i.e., natriuresis (via D1Rs and D5Rs) or antinatriuresis (via α1A-ARs). We tested the hypothesis that the D1R/D5R regulates the α1A-AR. D1-like dopamine receptors coimmunoprecipitated, colocalized, and cofractionated with ct1A-ARs in lipid rafts in immortalized human renal proximal tubule cells. Long-term treatment with the D1R/D5R agonist fenoldopam resulted in decreased D1R and D5R expression but increased α1A-AR abundance in the plasma membrane. Short-term fenoldopam treatment stimulated the translocation of Na+-K+-ATPase from the plasma membrane to the cytosol that was partially reversed by an α1A-AR agonist, which by itself induced Na+-K+-ATPase translocation from the cytosol to the plasma membrane. The a1A-AR-specific agonist A610603 also minimized the ability of fenoldopam to inhibit Na+-K+-ATPase activity. To determine the interaction among D1Rs, D5Rs, and α1A-ARs in vivo, we used phenylephrine and A610603 to decrease Na+ excretion in several D1-like dopamine receptor knockout mouse strains. Phenylephrine and A61603 treatment resulted in a partial reduction of urinary Na+ excretion in wild-type mice and its abolition in D1R knockout, D5R knockout, and D1R-D5R double-knockout mice. Our results demonstrate the ability of the D1-like dopamine receptors to regulate the expression and activity of α1A-AR. Elucidating the intricacies of the interaction among these receptors is crucial for a better understanding of the crosstalk between anti- and pro-hypertensive systems

    A direct tissue-grafting approach to increasing endogenous brown fat

    Get PDF
    There is widespread evidence that increasing functional mass of brown adipose tissue (BAT) via browning of white adipose tissue (WAT) could potentially counter obesity and diabetes. However, most current approaches focus on administration of pharmacological compounds which expose patients to highly undesirable side effects. Here, we describe a simple and direct tissue-grafting approach to increase BAT mass through ex vivo browning of subcutaneous WAT, followed by re-implantation into the host; this cell-therapy approach could potentially act synergistically with existing pharmacological approaches. With this process, entitled “exBAT”, we identified conditions, in both mouse and human tissue, that convert whole fragments of WAT to BAT via a single step and without unwanted off-target pharmacological effects. We show that ex vivo, exBAT exhibited UCP1 immunostaining, lipid droplet formation, and mitochondrial metabolic activity consistent with native BAT. In mice, exBAT exhibited a highly durable phenotype for at least 8 weeks. Overall, these results enable a simple and scalable tissue-grafting strategy, rather than pharmacological approaches, for increasing endogenous BAT and studying its effect on host weight and metabolism
    corecore