4 research outputs found

    Antidiabetic and Safety Properties of Ethanolic Leaf Extract of Corchorus olitorius in Alloxan-Induced Diabetic Rats

    Get PDF
    Diabetes is a major metabolic disease of global concern. Ethanolic extract of Corchorus olitorius leaf was investigated for antidiabetic activity in alloxan-induced diabetic rats. A total of thirty-six albino rats (Rattus norvegicus) with body weight 150.50 ± 10.50 g were randomly selected into six groups (A–F). Group A animals were non-diabetic and received 0.5 mL distilled water, groups B, C, D, E and F were made diabetic by administration of alloxan monohydrate (150 mg/kg, body weight i.p). Group B was diabetic untreated, group C was diabetic and treated with glibenclamide, while groups D, E and F received the ethanolic extract of C. olitorius leaf at a dose of 200 mg/kg, 400 mg/kg and 800 mg/kg body weight respectively. Phytochemical screening showed the presence of flavonoids, tannins, saponins, phlobatannin anthraquinones, phenol and cardiac glycoside and saponin. The blood glucose of the alloxanized rats after 72 hours which ranged from 17.30–25.33 mmol/L were significantly (p < 0.05) and progressively reduced in treated groups which compared favorably with the standard drug group. The significantly (p < 0.05) elevated levels of serum and liver bilirubin (direct and total), transaminases (AST and ALT), alkaline phosphatase, urea, creatinine, total cholesterol, triglyceride, LDL-C, as well as reduced levels of total protein, globulin, albumin and HDL-C in the diabetic untreated rats were normalized upon treatment with ethanolic extract of C. olitorius leaf. These results suggest that the ethanolic extract of C. olitorius leaf possesses antihyperglycemic property with no major side effect hence it could be considered safe for the management of diabetes

    Gold nanoparticles synthesized using extracts of cyclopia intermedia, commonly known as honeybush, amplify the cytotoxic effects of doxorubicin

    Get PDF
    Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented

    Gold Nanoparticles Synthesized Using Extracts of <i>Cyclopia intermedia</i>, Commonly Known as Honeybush, Amplify the Cytotoxic Effects of Doxorubicin

    No full text
    Cyclopia intermedia (C. intermedia) is an indigenous South African shrub used to prepare the popular medicinal honeybush (HB) tea. This plant contains high levels of mangiferin (MGF), a xanthonoid that was reported to have numerous biological activities, including anti-tumor activity. MGF and extracts that contain high concentrations of MGF, such as extracts from Mangifera indica L. or mango have been used to synthesize gold nanoparticles (AuNPs) using green nanotechnology. It has previously been shown that when AuNPs synthesized from M. indica L. extracts are used in combination with doxorubicin (DOX) and Ayurvedic medicine, the anti-tumor effects appear to be augmented. It has also been demonstrated that MGF used in combination with DOX resulted in enhanced anti-tumor effects. In this study, C. intermedia (HB) and MGF were used to synthesize HB-AuNPs and MGF-AuNPs, respectively. The physicochemical properties of the AuNPs were characterized by the UV-Visible Spectroscopy (UV-Vis), dynamic light scattering (DLS), Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and high-resolution transmission electron microscopy (HR-TEM). The cytotoxicity of HB-AuNPs and MGF-AuNPs were assessed on human colon (Caco-2), prostate (PC-3) and glioblastoma (U87) cancer cells; as well as normal breast epithelial (MCF-12A) cells using the MTT assay. Both HB-AuNPs and MGF-AuNPs demonstrated relatively low cytotoxicity in these cells. However, when these nanoparticles were used in combination with DOX, the cytotoxicity of DOX was significantly augmented

    Co-Treatment of Caco-2 Cells with Doxorubicin and Gold Nanoparticles Produced from Cyclopia intermedia Extracts or Mangiferin Enhances Drug Effects

    No full text
    Mangiferin (MGF) is a natural and valuable polyphenol found in significant levels in many plant species, including Cyclopia intermedia (C. intermedia). In a previous study, we synthesized gold nanoparticles (AuNPs) using MGF and a water extract of C. intermedia and reported that these AuNPs have very low cytotoxicity toward a human colon cancer (Caco-2) cell line. Although the study also showed that these biogenic AuNPs in combination with doxorubic (DOX) significantly augmented the cytotoxic effects of DOX in Caco-2 cells, the mechanism of the enhanced effect was not fully understood, and it was also not known if other cell lines would be sensitive to this co-treatment. In the present study, we examined the cytotoxicity of the co-treatment in Caski, HeLa, HT-29, KMST-6 and MDA-321 cell lines. Additionally, we investigated the mechanistic effects of this co-treatment in Caco-2 cells using several assays, including the adenosine triphosphate (ATP), the oxidative stress, the mitochondrial depolarization, the colony formation, the APOPercentage and the DNA fragmentation assays. We also assessed the intracellular uptake of the biogenic AuNPs. The study showed that the biogenic AuNPs were effectively taken up by the cancer cells, which, in turn, may have enhanced the sensitivity of Caco-2 cells to DOX. Moreover, the combination of the biogenic AuNPs and DOX caused a rapid depletion of ATP levels, increased mitochondrial depolarization, induced apoptosis, reduced the production of reactive oxygen species (ROS) and inhibited the long-term survival of Caco-2 cells. Although the study provided some insight into the mechanism of cytotoxicity induced by the co-treatment, further mechanistic and molecular studies are required to fully elucidate the enhanced anticancer effect of the co-treatment
    corecore