3 research outputs found
Changes in contributions of different Anopheles vector species to malaria transmission in east and southern Africa from 2000 to 2022
Background:
Malaria transmission in Africa is facilitated by multiple species of Anopheles mosquitoes. These vectors have different behaviors and vectorial capacities and are affected differently by vector control interventions, such as insecticide-treated nets and indoor residual spraying. This review aimed to assess changes in the contribution of different vector species to malaria transmission in east and southern Africa over 20 years of widespread insecticide-based vector control.
Methods:
We searched PubMed, Global Health, and Web of Science online databases for articles published between January 2000 and April 2023 that provided species-specific sporozoite rates for different malaria vectors in east and southern Africa. We extracted data on study characteristics, biting rates, sporozoite infection proportions, and entomological inoculation rates (EIR). Using EIR data, the proportional contribution of each species to malaria transmission was estimated.
Results:
Studies conducted between 2000 and 2010 identified the Anopheles gambiae complex as the primary malaria vector, while studies conducted from 2011 to 2021 indicated the dominance of Anopheles funestus. From 2000 to 2010, in 57% of sites, An. gambiae demonstrated higher parasite infection prevalence than other Anopheles species. Anopheles gambiae also accounted for over 50% of EIR in 76% of the study sites. Conversely, from 2011 to 2021, An. funestus dominated with higher infection rates than other Anopheles in 58% of sites and a majority EIR contribution in 63% of sites. This trend coincided with a decline in overall EIR and the proportion of sporozoite-infected An. gambiae. The main vectors in the An. gambiae complex in the region were Anopheles arabiensis and An. gambiae sensu stricto (s.s.), while the important member of the An. funestus group was An. funestus s.s.
Conclusion:
The contribution of different vector species in malaria transmission has changed over the past 20 years. As the role of An. gambiae has declined, An. funestus now appears to be dominant in most settings in east and southern Africa. Other secondary vector species may play minor roles in specific localities. To improve malaria control in the region, vector control should be optimized to match these entomological trends, considering the different ecologies and behaviors of the dominant vector species
Geospatial modelling of dry season habitats of the malaria vector, Anopheles funestus, in south-eastern Tanzania
Background
Anopheles funestus is a major malaria vector in Eastern and Southern Africa and is currently the dominant malaria-transmitting vector in many parts of Tanzania. Previous research has identified its preference for specific aquatic habitats, especially those that persist in dry months. This observation suggests the potential for targeted control through precise habitat mapping and characterization. In this study, we investigated the influence of habitat characteristics, land cover and human population densities on An. funestus distribution during dry seasons. Based on the results, we developed a habitat suitability model for this vector species in south-eastern Tanzania.
Methods
Eighteen villages in south-eastern Tanzania were surveyed during the dry season from September-December 2021. Water bodies were systematically inspected for mosquito larvae and characterized by their physico-chemical characteristics and surrounding environmental features. A generalized linear model was used to assess the presence of An. funestus larvae as a function of the physico-chemical characteristics, land use and human population densities. The results obtained from this model were used to generate spatially explicit predictions of habitat suitability in the study districts.
Results
Of the 1466 aquatic habitats surveyed, 440 were positive for An. funestus, with river streams having the highest positivity (74%; n = 322) followed by ground pools (15%; n = 67). The final model had an 83% accuracy in predicting positive An. funestus habitats, with the most important characteristics being permanent waters, clear waters with or without vegetation or movement and shading over the habitats. There was also a positive association of An. funestus presence with forested areas and a negative association with built-up areas. Human population densities had no influence on An. funestus distribution.
Conclusions
The results of this study underscore the crucial role of both the specific habitat characteristics and key environmental factors, notably land cover, in the distribution of An. funestus. In this study area, An. funestus predominantly inhabits river streams and ground pools, with a preference for clear, perennial waters with shading. The strong positive association with more pristine environments with tree covers and the negative association with built-up areas underscore the importance of ecological transitions in vector distribution and malaria transmission risk. Such spatially explicit predictions could enable more precise interventions, particularly larval source management, to accelerate malaria control