29 research outputs found

    Nuclear localization and cytosolic overexpression of LASP-1 correlates with tumor size and nodal-positivity of human breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LIM and SH3 protein 1 (LASP-1), initially identified from human breast cancer, is a specific focal adhesion protein involved in cell proliferation and migration, which was reported to be overexpressed in 8–12 % of human breast cancers and thought to be exclusively located in cytoplasm.</p> <p>Methods</p> <p>In the present work we analyzed the cellular and histological expression pattern of LASP-1 and its involvement in biological behavior of human breast cancer through correlation with standard clinicopathological parameters and expression of c-erbB2 (HER-2/neu), estrogen- (ER) and progesterone-receptors (PR). For this purpose immunohistochemical staining intensity and percentage of stained cells were semi-quantitatively rated to define a LASP-1 immunoreactive score (LASP-1-IRS). LASP-1-IRS was determined in 83 cases of invasive ductal breast carcinomas, 25 ductal carcinomas in situ (DCIS) and 18 fibroadenomas. Cellular LASP-1 distribution and expression pattern was visualized by immunofluorescence and confocal microscopy and assessed through separate Western blots of nuclear and cytosol preparations of BT-20, MCF-7, MDA-MB231, and ZR-75/1 breast cancer cells.</p> <p>Results</p> <p>Statistical analysis revealed that the resulting LASP-1-IRS was significantly higher in invasive carcinomas compared to fibroadenomas (p = 0.0176). Strong cytoplasmatic expression of LASP-1 was detected in 55.4 % of the invasive carcinomas, which correlated significantly with nuclear LASP-1-positivity (p = 0.0014), increased tumor size (p = 0.0159) and rate of nodal-positivity (p = 0.0066). However, levels of LASP-1 expression did not correlate with average age at time point of diagnosis, histological tumor grading, c-erbB2-, ER- or PR-expression.</p> <p>Increased nuclear localization and cytosolic expression of LASP-1 was found in breast cancer with higher tumor stage as well as in rapidly proliferating epidermal basal cells. Confocal microscopy and separate Western blots of cytosolic and nuclear preparations confirmed nuclear localization of LASP-1.</p> <p>Conclusion</p> <p>The current data provide evidence that LASP-1 is not exclusively a cytosolic protein, but is also detectable within the nucleus. Increased expression of LASP-1 in vivo is present in breast carcinomas with higher tumor stage and therefore may be related with worse prognosis concerning patients' overall survival.</p

    Survey of Activated FLT3 Signaling in Leukemia

    Get PDF
    Activating mutations of FMS-like tyrosine kinase-3 (FLT3) are found in approximately 30% of patients with acute myeloid leukemia (AML). FLT3 is therefore an attractive drug target. However, the molecular mechanisms by which FLT3 mutations lead to cell transformation in AML remain unclear. To develop a better understanding of FLT3 signaling as well as its downstream effectors, we performed detailed phosphoproteomic analysis of FLT3 signaling in human leukemia cells. We identified over 1000 tyrosine phosphorylation sites from about 750 proteins in both AML (wild type and mutant FLT3) and B cell acute lymphoblastic leukemia (normal and amplification of FLT3) cell lines. Furthermore, using stable isotope labeling by amino acids in cell culture (SILAC), we were able to quantified over 400 phosphorylation sites (pTyr, pSer, and pThr) that were responsive to FLT3 inhibition in FLT3 driven human leukemia cell lines. We also extended this phosphoproteomic analysis on bone marrow from primary AML patient samples, and identify over 200 tyrosine and 800 serine/threonine phosphorylation sites in vivo. This study showed that oncogenic FLT3 regulates proteins involving diverse cellular processes and affects multiple signaling pathways in human leukemia that we previously appreciated, such as Fc epsilon RI-mediated signaling, BCR, and CD40 signaling pathways. It provides a valuable resource for investigation of oncogenic FLT3 signaling in human leukemia
    corecore