45 research outputs found

    Two-state system driven by imperfect pi pulses: an estimate of the error accumulation in bang-bang control methods

    Full text link
    The evolution of a two-state system driven by a sequence of imperfect pi pulses (with random phase or amplitude errors) is calculated. The resulting decreased fidelity is used to derive a plausible limit on the performance of "bang-bang" control methods for the suppression of decoherence.Comment: 9 pages, 3 figures; submitted to Journal of Modern Optic

    University Physics I: Classical Mechanics

    Get PDF
    This is a textbook for the first semester of University Physics for scientists and engineers. It covers classical mechanics, and a brief introduction to thermodynamics. The presentation and approach are similar to Mazur’s “The Principles and Practice of Physics,” in that conservation laws are introduced before forces, and one-dimensional systems thoroughly covered before moving to two dimensions. Although the course is “calculus based,” the book has been written with the understanding that many students may be taking calculus simultaneously as a corequisite, so the use of calculus is relatively sparse. This revised version (Fall 2019) takes into account a number of student suggestions. it has more worked out examples, and also a few more problems; the material in Chapters 8 and 9 has been slightly rearranged, so that now rotational kinematics is part of Chapter 8 (“Motion in two dimensions”); and the chapters on gravity and waves, 10 and 12, have been simplified a bit (particularly 12). Some of the more advanced examples from the first version have now been labeled “Advanced Topics,” so students should know that they can skip them if they want to. Several typos have been corrected as well.https://scholarworks.uark.edu/oer/1002/thumbnail.jp

    Impossibility of large phase shifts via the "giant Kerr effect" with single-photon wavepackets

    Full text link
    An approximate analytical solution is presented, along with numerical calculations, for a system of two single-photon wavepackets interacting via an ideal, localized Kerr medium. It is shown that, because of spontaneous emission into the initially unoccupied temporal modes, the cross-phase modulation in the Schrodinger picture is very small as long as the spectral width of the single-photon pulses is well within the medium's bandwidth. In this limit, the Hamiltonian used can be derived from the "giant Kerr effect" for a four-level atom, under conditions of electromagnetically-induced transparency; it is shown explicitly that the linear absorption in this system increases as the pulse's spectral width approaches the medium's transparency bandwidth, and hence, as long as the absorption probability remains small, the maximum cross-phase modulation is limited to essentially useless values. These results are in agreement with the general, causality- and unitarity-based arguments of Shapiro and co-workers.Comment: 8 pages, 2 figures, to be submitted to Physical Review

    Reply to "Comment on "Some implications of the quantum nature of laser fields for quantum computations''''

    Get PDF
    In this revised reply to quant-ph/0211165, I address the question of the validity of my results in greater detail, by comparing my predictions to those of the Silberfarb-Deutsch model, and I deal at greater length with the beam area paradox. As before, I conclude that my previous results are an (order-of-magnitude) accurate estimate of the error probability introduced in quantum logical operations by the quantum nature of the laser field. While this error will typically (for a paraxial beam) be smaller than the total error due to spontaneous emission, a unified treatment of both effects reveals that they lead to formally similar constraints on the minimum number of photons per pulse required to perform an operation with a given accuracy; these constraints agree with those I have derived elsewhere.Comment: A reply to quant-ph/0211165. Added more calculations and discussion, removed some flippanc
    corecore