10 research outputs found

    Phytochemical Characterization of By-Products of Habanero Pepper Grown in Two Different Types of Soils from YucatĂĄn, Mexico

    No full text
    By-products of edible plants may contain potentially useful phytochemicals. Herein, we valorized the by-products of Capsicum chinense by phytochemical characterization of its leaves, peduncles and stems. Plants of habanero pepper were grown in a greenhouse, in polyethylene bags with two soils that were named according to the Maya classification as: K’ankab lu’um (red soil) and Box lu’um (black soil). Habanero pepper by-products were dried using an oven, the extracts were obtained by Ultrasound Assisted Extraction, and phytochemical quantification in all the extracts was conducted by Ultra Performance Liquid Chromatography coupled to Diode Array Detector (UPLC-DAD). Differences in the phytochemical content were observed according to the by-product and soil used. Catechin and rutin showed the highest concentrations in the peduncles of plants grown in both soils. The leaves of plants grown in black soil were rich in myricetin, ÎČ-carotene, and vitamin E, and the stems showed the highest protocatechuic acid content. While the leaves of plants grown in red soil were rich in myricetin and vitamin C, the stems showed the highest chlorogenic acid content. This novel information regarding the phytochemical composition of the by-products of C. chinense may be relevant in supporting their potential application in food and pharmaceutical industries

    Determination of Peak Purity in HPLC by Coupling Coulometric Array Detection and Two-Dimensional Correlation Analysis

    No full text
    This work aims to evaluate the purity of chromatographic peaks by a two-dimensional correlation (2D-corr) analysis. Such an analysis leads to two contour plots: synchronous and asynchronous. The synchronous contour plot provides information on the number of peaks present in the chromatogram. The asynchronous contour plot reveals the presence of overlapping species on each peak. The utility of 2D-corr analysis was demonstrated by the chromatographic analysis of Capsicum chili extracts obtained by HPLC coupled with a coulometric array of sixteen detectors. Thanks to 16 electrochemical sensors, each poised at increasing potentials, the resulting 2D-corr analysis revealed the presence of at least three species on the peak located at a retention time of 0.93 min. Mass spectrometry (MS) analysis was used to analyze the coeluting species, which were identified as: quinic acid (3.593 min), ascorbic acid (3.943 min), and phenylalanine (4.229 min). Overall, this work supports the use of 2D-corr analysis to reveal the presence of overlapping compounds and, thus, verify the signal purity of chromatographic peaks

    Evaluation of the Soil Type Effect on the Volatile Compounds in the Habanero Pepper (<i>Capsicum chinense</i> Jacq.)

    No full text
    The aim of this research was to evaluate the effect of soil on the concentration of the main volatile compounds in the Habanero pepper (Capsicum chinense Jacq.). Plants were cultivated in three soils named, corresponding to the Maya classification, as Chich lu’um (brown soil), Box lu’um (black soil), and K’ankab lu’um (red soil). The volatile compounds of the peppers were extracted by steam distillation, analyzed by gas chromatography, and reported on a fresh weight (FW) basis. The results indicated that the soil presented a significative effect on the concentration of the volatile compounds evaluated (1-hexanol, hexyl-3-methyl butanoate, 3,3-dimethyl-1-hexanol, cis-3-hexenyl hexanoate). The peppers cultivated in black soil exhibited the highest concentration of 1-hexanol (360.14 ± 8.57 ”g g−1 FW), 3,3-dimethyl-1-hexanol (1020.61 ± 51.27 ”g g−1 FW), and cis-3-hexenyl hexanoate (49.49 ± 1.55 ”g g−1 FW). In contrast, the highest concentration of hexyl-3-methyl butanoate (499.93 ± 5.78 ”g g−1 FW) was quantified in peppers grown in brown soil. This knowledge helps us to understand the role of the soil in the aroma of the Habanero pepper and could be used by farmers in the region (Yucatan Peninsula) to select the soil according to the desired aroma characteristics

    Fermentation of Habanero Pepper by Two Lactic Acid Bacteria and Its Effect on the Production of Volatile Compounds

    No full text
    Lactiplantibacillus plantarum is a lactic acid bacterium that grows in different environments; this ability arises due to the variability within the species, which may be influenced by their origin. On the other hand, habanero pepper (Capsicum chinense) from Yucatan, Mexico, is characterized by its unique sensory properties such as aroma and pungency and has an annual production of more than 5000 t in the Yucatan Peninsula. Thus, the purpose of this study was to compare L. plantarum from different isolation sources during habanero pepper fermentation. A 23 factorial design was made for the evaluation of the effect of two cultures a commercial (COM) and a wild (WIL) strain, in a habanero pepper puree medium (HPP); ripe and unripe peppers and different proportions of habanero pepper puree (40:60 or 60:40, HPP:water, w/w) were used to obtain the kinetic parameters of growth, lactic acid production, and volatile composition. The highest growth and lactic acid production were achieved in the 60:40 HPP:water, while WIL presented the major production of lactic acid. Characteristic volatiles in WIL fermentation were 2,3- butanedione, whereas in COM fermentation, they were limonene, cis-3-hexenyl hexanoate, and 1-hexanol. The association between COM and 1-hexanol was confirmed with principal component analysis (PCA)

    Evaluation of the Volatile Composition and Sensory Behavior of Habanero Pepper during Lactic Acid Fermentation by L.&nbsp;plantarum

    No full text
    Habanero pepper is recognized for its appealing aroma and flavor. Lactic acid fermentation can improve these sensory properties, especially aroma, by the synthesis of volatile compounds, which might also increase the consumer preference. Thus, the aim of this research was to compare the volatile composition as well as different sensory parameters such as preference and emotions related to the lactic acid fermentation of Habanero pepper by two strains (wild and commercial) of Lactiplantibacillus plantarum. A multiple factor ANOVA was used to compare the volatile composition with different fermentation times and strains. The results demonstrated that the interaction between the strain and fermentation time had significant effects on the volatile compound production that includes 1-hexanol, cis-3-hexenyl hexanoate, linalool, and 3,3 dimethyl-1-hexanol while only time influenced the production of trans-2-hexen-1-al. The wild strain (WIL) at 48 h of fermentation produced the highest concentration of 3,3 dimethyl-1-hexanol and trans-2-hexen-1-al. On the other hand, the commercial strain (COM) presented the highest concentration of 1-hexanol and cis-3-hexenyl hexanoate with a 72 h fermentation. The most preferred sample was that fermented by WIL for 48 h for the attribute of odor, while for taste, the most preferred sample was that fermented for 72 h with COM

    Polyphenols Content in Capsicum chinense Fruits at Different Harvest Times and Their Correlation with the Antioxidant Activity

    No full text
    The aim of this work was to investigate the changes of the content of polyphenols in fruits of Capsicum chinense Jacq. at different harvest times and their correlation with the antioxidant activity. Habanero pepper plants grown in black soil (Mayan name: Box lu&rsquo;um) and harvested at 160, 209, 223, 237 and 252 post-transplant days (PTD) were analyzed. The results indicated that subsequent harvesting cycles decreased the content of total polyphenols, catechin, chlorogenic acid and ellagic acid, while the content of gallic and protocatechuic acid increased. The antioxidant activity determined by DPPH (2,2-Diphenyl-1-picrylhydrazyl) radical scavenging and ABTS (2,2&prime;-azino-di-3-ethylbenzthiazoline sulfonic acid) assay decreased through the harvest days. Linear correlation analysis between total polyphenol content and antioxidant activity in peppers resulted in a correlation of r2DPPH = 0.8999 and r2ABTS = 0.8922. Additionally, a good correlation of the antioxidant activity was found with catechin (r2DPPH = 0.8661 and r2ABTS = 0.8989), chlorogenic acid (r2DPPH = 0.8794 and r2ABTS = 0.8934) and ellagic acid (r2DPPH = 0.8979 and r2ABTS = 0.9474), indicating that these polyphenols highly contributed to the antioxidant activity in Habanero peppers. This work contributes to understanding the changes that take place during the development of Capsicum chinense, indicating that fruit harvested at earlier PTD showed the highest concentrations of total polyphenols and antioxidant activity, obtaining the best results at 160 PTD

    In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum chinense By-Products

    No full text
    By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucat&aacute;n, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 &plusmn; 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 &plusmn; 0.0052 mM Trolox equivalent) and polyphenol content (3280 &plusmn; 15.59 mg&middot;100 g&minus;1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity

    Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent

    No full text
    Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 &plusmn; 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising &ldquo;green&rdquo; extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products
    corecore