25 research outputs found
Recommended from our members
Managing Vegetation to Restore Tern Nesting Habitat in the Gulf of Maine
Following catastrophic exploitation throughout the North Atlantic, breeding seabird populations have begun to recover thanks to regulatory protection and restoration and management efforts. As bird populations increase, new challenges emerge, including overgrowth of vegetation that limits the open nesting habitat favored by most tern species. Though managers have used a variety of measures to reduce vegetation cover, these techniques have rarely been quantified or compared experimentally.
During the summers of 2009 and 2010, I applied two different techniques, controlled burning and artificial weed barriers (muslin fabric and artificial turf) to experimental plots on Eastern Egg Rock and Outer Green Island, near-shore seabird nesting islands in mid-coastal Maine. I then monitored vegetation regrowth and use by nesting terns to assess the effectiveness of these techniques for opening and maintaining Common Tern nesting habitat during a full breeding season, comparing treated plots to vegetated control plots and existing tern nesting habitat. Burned areas did not remain open for the full nesting season, but regrew shortly after laying, leading to near-complete nest failure in these plots. Tern nest and fledging success was similar in weed barrier (1.37 chicks/pair) and untreated tern nesting habitat (1.38 chicks/pair) plots. Replacement of existing vegetation, tested at a limited scale on Outer Green Island, did not succeed.
These three techniques represent only a small fraction of vegetation management techniques used throughout the North Atlantic region. Through literature review and consultation with North Atlantic colony managers, I collected information on vegetation management on 34 tern nesting islands between 33 and 55° N latitude and developed a summary of different vegetation control techniques used. I identified 14 technique types suitable for use in nesting colonies: i.e., that can be applied before and after (but not during) the nesting period of May-July, that do not cause destructive impacts to the surrounding ecosystem, and that involve materials and labor that can be transported to inaccessible offshore islands. Of these techniques, 8 created usable tern nesting habitat for a full breeding season, and the most successful techniques required constructing habitat over existing vegetation. The success of different methods depended heavily on the plant communities and soil types involved. In general, vegetation management options were more limited and less successful for elevated, rocky islands than for low, sandy islands. Often, techniques that successfully removed one species or group of species (i.e., perennial grasses) failed due to rapid colonization by other species (i.e., herbaceous annuals). This review of past and ongoing vegetation management techniques used on seabird nesting islands, including their costs, methods for application, and effectiveness, provides seabird managers a reference when evaluating current and future vegetation management programs
Distributing transmitters to maximize population-level representativeness in automated radio telemetry studies of animal movement
Telemetry is a powerful and indispensable tool for evaluating wildlife movement and distribution patterns, particularly in systems where opportunities for direct observation are limited. However, the effort and expense required to track individuals often results in small sample sizes, which can lead to biased results if the sample of tracked individuals does not fully capture spatial, temporal, and individual variability within the target population. To better understand the influence of sampling design on results of automated radio telemetry studies, we conducted a retrospective power analysis of very high frequency (VHF) radio telemetry data from the Motus Wildlife Tracking System for two species of birds along the United States Atlantic coast: a shorebird, the piping plover (Charadrius melodus), and a nearshore seabird, the common tern (Sterna hirundo). We found thatâ~â100â150 tracked individuals were required to identify 90% of locations known to be used by the tracked population, with 40â50 additional individuals required to include 95% of used locations. For any number of individuals, the percentage of stations included in the sample was higher for common terns than for piping plovers when tags were deployed within a single site and year. Percentages of stations included increased for piping plovers when birds were tagged over multiple sites and, to a lesser extent, years, and increased with average length of the tracking period. The probability that any given receiver station used by the population would be included in a subsample increased with the number of birds tracked, station proximity to a migratory stopover or staging site, number of receiving antennas per station, and percentage of the tracked population present. Our results provide general guidance for the number and distribution of tagged birds required to obtain representative VHF telemetry data, while also highlighting the importance of accounting for station network configuration and species-specific differences in behavior when designing automated radio telemetry studies to address specific research questions. Our results have broad applications to remotely track movements of small-bodied migratory wildlife in inaccessible habitats, including predicting and monitoring effects of offshore wind energy development
Physical condition and stress levels during early development reflect feeding rates and predict pre- and post-fledging survival in a nearshore seabird
The effects of acute environmental stressors on reproduction in wildlife are often difficult to measure because of the labour and disturbance involved in collecting accurate reproductive data. Stress hormones represent a promising option for assessing the effects of environmental perturbations on altricial young; however, it is necessary first to establish how stress levels are affected by environmental conditions during development and whether elevated stress results in reduced survival and recruitment rates. In birds, the stress hormone corticosterone is deposited in feathers during the entire period of feather growth, making it an integrated measure of background stress levels during development. We tested the utility of feather corticosterone levels in 3- to 4-week-old nestling brown pelicans (Pelecanus occidentalis) for predicting survival rates at both the individual and colony levels. We also assessed the relationship of feather corticosterone to nestling body condition and rates of energy delivery to nestlings. Chicks with higher body condition and lower corticosterone levels were more likely to fledge and to be resighted after fledging, whereas those with lower body condition and higher corticosterone levels were less likely to fledge or be resighted after fledging. Feather corticosterone was also associated with intracolony differences in survival between ground and elevated nest sites. Colony-wide, mean feather corticosterone predicted nest productivity, chick survival and post-fledging dispersal more effectively than did body condition, although these relationships were strongest before fledglings dispersed away from the colony. Both reproductive success and nestling corticosterone were strongly related to nutritional conditions, particularly meal delivery rates. We conclude that feather corticosterone is a powerful predictor of reproductive success and could provide a useful metric for rapidly assessing the effects of changes in environmental conditions, provided pre-existing baseline variation is monitored and understood
Modeling spatiotemporal abundance of mobile wildlife in highly variable environments using boosted GAMLSS hurdle models
Modeling organism distributions from survey data involves numerous statistical challenges, including accounting for zeroâinflation, overdispersion, and selection and incorporation of environmental covariates. In environments with high spatial and temporal variability, addressing these challenges often requires numerous assumptions regarding organism distributions and their relationships to biophysical features. These assumptions may limit the resolution or accuracy of predictions resulting from surveyâbased distribution models. We propose an iterative modeling approach that incorporates a negative binomial hurdle, followed by modeling of the relationship of organism distribution and abundance to environmental covariates using generalized additive models (GAM) and generalized additive models for location, scale, and shape (GAMLSS). Our approach accounts for key features of survey data by separating binary (presenceâabsence) from count (abundance) data, separately modeling the mean and dispersion of count data, and incorporating selection of appropriate covariates and response functions from a suite of potential covariates while avoiding overfitting. We apply our modeling approach to surveys of sea duck abundance and distribution in Nantucket Sound (Massachusetts, USA), which has been proposed as a location for offshore wind energy development. Our model results highlight the importance of spatiotemporal variation in this system, as well as identifying key habitat features including distance to shore, sediment grain size, and seafloor topographic variation. Our work provides a powerful, flexible, and highly repeatable modeling framework with minimal assumptions that can be broadly applied to the modeling of survey data with high spatiotemporal variability. Applying GAMLSS models to the count portion of survey data allows us to incorporate potential overdispersion, which can dramatically affect model results in highly dynamic systems. Our approach is particularly relevant to systems in which little a priori knowledge is available regarding relationships between organism distributions and biophysical features, since it incorporates simultaneous selection of covariates and their functional relationships with organism responses
Spatial and individual factors mediate the tissue burden of polycyclic aromatic hydrocarbons in adult and chick brown pelicans in the northern Gulf of Mexico
The northern Gulf of Mexico supports a substantial level of oil and gas extraction in marine waters and experiences acute and chronic exposure to marine pollution events. The region also supports a diverse array of breeding and migratory seabirds that are exposed to these pollutants during foraging and other activities. Among the pollutants of highest concern within the region are polycyclic aromatic hydrocarbons (PAHs) which tend to be toxic, carcinogenic, mutagenic, or teratogenic. We assessed PAH loads in blood from adult brown pelicans and from feathers of adults and chicks of brown pelicans in relation to individual (e.g., body condition, sex) and spatial (e.g., breeding location within the Gulf, home range size, migration distance) factors. Of the 24 PAHs assessed, 17 occurred at least once among all samples. There were no PAHs found in chicks that were not also found in adults. Alkylated PAHs occurred more commonly and were measured at higher summed concentrations compared to parent PAHs in all samples, indicating that exposure to oil and/or byproducts of oil may have been a substantial source of PAH contamination for brown pelicans during this study. Within adults, PAHs were more likely to occur, and to increase in concentration, in blood samples of females compared to males, although no difference was found in feather samples. We also found that occurrence of and concentration of PAHs increased in adults that migrated longer distances. In adults and chicks, the background levels of oil and gas development within the region of the colony was not a consistent predictor of the presence of or concentration of PAHs. We also found correlations of PAHs with hematological and biochemical biomarkers that suggested compromised health. Our results indicate that both short- and long-term exposure (i.e., blood and feathers, respectively) are occurring for this species and that even nest-bound chicks can accumulate high levels of PAHs. Long-term tracking of PAHs, as well as an assessment of sublethal effects of PAHs on pelicans, could enhance our understanding of the persistence and effects of this contaminant in the northern Gulf as could increasing the breadth of species studied
Spatially Explicit Network Analysis Reveals MultiâSpecies Annual Cycle Movement Patterns of Sea Ducks
Conservation of longâdistance migratory species poses unique challenges. Migratory connectivity, that is, the extent to which groupings of individuals at breeding sites are maintained in wintering areas, is frequently used to evaluate population structure and assess use of key habitat areas. However, for species with complex or variable annual cycle movements, this traditional bimodal framework of migratory connectivity may be overly simplistic. Like many other waterfowl, sea ducks often travel to specific preâ and postâbreeding sites outside their nesting and wintering areas to prepare for migration by feeding extensively and, in some cases, molting their flight feathers. These additional migrations may play a key role in population structure, but are not included in traditional models of migratory connectivity. Network analysis, which applies graph theory to assess linkages between discrete locations or entities, offers a powerful tool for quantitatively assessing the contributions of different sites used throughout the annual cycle to complex spatial networks. We collected satellite telemetry data on annual cycle movements of 672 individual sea ducks of five species from throughout eastern North America and the Great Lakes. From these data, we constructed a multiâspecies network model of migratory patterns and site use over the course of breeding, molting, wintering, and migratory staging. Our results highlight interâ and intraâspecific differences in the patterns and complexity of annual cycle movement patterns, including the central importance of staging and molting sites in James Bay, the St. Lawrence River, and southern New England to multiâspecies annual cycle habitat linkages, and highlight the value of Longâtailed Ducks (Calengula haemalis) as an umbrella species to represent the movement patterns of multiple sea duck species. We also discuss potential applications of network migration models to conservation prioritization, identification of population units, and integrating different data streams
Implanted Satellite Transmitters Affect Sea Duck Movement Patterns at Short and Long Timescales
Studies of the effects of transmitters on wildlife often focus on survival. However, sublethal behavioral changes resulting from radio-marking have the potential to affect inferences from telemetry data and may vary based on individual and environmental characteristics. We used a long-term, multi-species tracking study of sea ducks to assess behavioral patterns at multiple temporal scales following implantation of intracoelomic satellite transmitters. We applied state-space models to assess short-term behavioral patterns in 476 individuals with implanted satellite transmitters, as well as comparing breeding site attendance and migratory phenology across multiple years after capture. In the short term, our results suggest an increase in dispersive behavior immediately following capture and transmitter implantation; however, behavior returned to seasonally average patterns within ~5 days after release. Over multiple years, we found that breeding site attendance by both males and females was depressed during the first breeding season after radio-marking relative to subsequent years, with larger relative decreases in breeding site attendance among males than females. We also found that spring and breeding migrations occurred later in the first year after radio-marking than in subsequent years. Across all behavioral effects, the severity of behavioral change often varied by species, sex, age, and capture season. We conclude that, although individuals appear to adjust relatively quickly (i.e. within 1 week) to implanted satellite transmitters, changes in breeding phenology may occur over the longer term and should be considered when analyzing and reporting telemetry data
Recommended from our members
Managing Vegetation to Restore Tern Nesting Habitat in the Gulf of Maine
Following catastrophic exploitation throughout the North Atlantic, breeding seabird populations have begun to recover thanks to regulatory protection and restoration and management efforts. As bird populations increase, new challenges emerge, including overgrowth of vegetation that limits the open nesting habitat favored by most tern species. Though managers have used a variety of measures to reduce vegetation cover, these techniques have rarely been quantified or compared experimentally. During the summers of 2009 and 2010, I applied two different techniques, controlled burning and artificial weed barriers (muslin fabric and artificial turf) to experimental plots on Eastern Egg Rock and Outer Green Island, near-shore seabird nesting islands in mid-coastal Maine. I then monitored vegetation regrowth and use by nesting terns to assess the effectiveness of these techniques for opening and maintaining Common Tern nesting habitat during a full breeding season, comparing treated plots to vegetated control plots and existing tern nesting habitat. Burned areas did not remain open for the full nesting season, but regrew shortly after laying, leading to near-complete nest failure in these plots. Tern nest and fledging success was similar in weed barrier (1.37 chicks/pair) and untreated tern nesting habitat (1.38 chicks/pair) plots. Replacement of existing vegetation, tested at a limited scale on Outer Green Island, did not succeed. These three techniques represent only a small fraction of vegetation management techniques used throughout the North Atlantic region. Through literature review and consultation with North Atlantic colony managers, I collected information on vegetation management on 34 tern nesting islands between 33 and 55° N latitude and developed a summary of different vegetation control techniques used. I identified 14 technique types suitable for use in nesting colonies: i.e., that can be applied before and after (but not during) the nesting period of May-July, that do not cause destructive impacts to the surrounding ecosystem, and that involve materials and labor that can be transported to inaccessible offshore islands. Of these techniques, 8 created usable tern nesting habitat for a full breeding season, and the most successful techniques required constructing habitat over existing vegetation. The success of different methods depended heavily on the plant communities and soil types involved. In general, vegetation management options were more limited and less successful for elevated, rocky islands than for low, sandy islands. Often, techniques that successfully removed one species or group of species (i.e., perennial grasses) failed due to rapid colonization by other species (i.e., herbaceous annuals). This review of past and ongoing vegetation management techniques used on seabird nesting islands, including their costs, methods for application, and effectiveness, provides seabird managers a reference when evaluating current and future vegetation management programs.Master of Science (M.S.
Rapid loss of maternal immunity and increase in environmentally mediated antibody generation in urban gulls
Abstract Monitoring pathogen circulation in wildlife sentinel populations can help to understand and predict the spread of disease at the wildlife-livestock-human interface. Immobile young provide a useful target population for disease surveillance, since they can be easily captured for sampling and their levels of antibodies against infectious agents can provide an index of localized circulation. However, early-life immune responses include both maternally-derived antibodies and antibodies resulting from exposure to pathogens, and disentangling these two processes requires understanding their individual dynamics. We conducted an egg-swapping experiment in an urban-nesting sentinel seabird, the yellow-legged gull, and measured antibody levels against three pathogens of interest (avian influenza virus AIV, Toxoplasma gondii TOX, and infectious bronchitis virus IBV) across various life stages, throughout chick growth, and between nestlings raised by biological or non-biological parents. We found that levels of background circulation differed among pathogens, with AIV antibodies widely present across all life stages, TOX antibodies rarer, and IBV antibodies absent. Antibody titers declined steadily from adult through egg, nestling, and chick stages. For the two circulating pathogens, maternal antibodies declined exponentially after hatching at similar rates, but the rate of linear increase due to environmental exposure was significantly higher in the more prevalent pathogen (AIV). Differences in nestling antibody levels due to parental effects also persisted longer for AIV (25 days, vs. 14 days for TOX). Our results suggest that yellow-legged gulls can be a useful sentinel population of locally transmitted infectious agents, provided that chicks are sampled at ages when environmental exposure outweighs maternal effects