2,888 research outputs found

    Comment on "Localized behavior near the Zn impurity in YBa2Cu4O8 as measured by nuclear quadrupole resonance"

    Full text link
    Williams and Kramer [Phys. Rev. B {\bf 64}, 104506 (2001)] have recently argued against the existence of staggered magnetic moments residing on several lattice sites around Zn impurities in YBCO superconductors. This claim, which is in line with an earlier publication by Williams, Tallon and Dupree [Phys. Rev. B {\bf 61}, 4319 (2000)], is however in contradiction with a large body of experimental data from different NMR groups. On the contrary, the authors argue in favor of a very localized spin and charge density on Cu sites first neighbors to Zn. We show that the conclusions of Williams and Kramer arise from erroneous interpretations of NMR and NQR data.Comment: 4 page

    Zero Temperature Phase Transition in Spin-ladders: Phase Diagram and Dynamical studies of Cu(Hp)Cl

    Full text link
    In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to these critical points is presented. The scaling functions, universal to all quantum critical points in one-dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum critical regime at higher temperature. The general behaviour close these quantum critical points can be tied to known models of quantum magnetism.Comment: few corrections made, 15 pages, to be published in European Journal of Physics

    Superconducting Spiral Phase in the two-dimensional t-J model

    Full text link
    We analyse the t-t'-t''-J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping \delta << 1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t'=t''=0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t' and t'' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations (``order from disorder'' effect). We show that at \delta = 0.119 the spiral is commensurate with the lattice with a period of 8 lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d,...) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,\pm 1) directions.Comment: 17 pages, 11 figure

    Using BBN in cosmological parameter extraction from CMB: a forecast for Planck

    Full text link
    Data from future high-precision Cosmic Microwave Background (CMB) measurements will be sensitive to the primordial Helium abundance YpY_p. At the same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN) as a function of the baryon and radiation densities, as well as a neutrino chemical potential. We suggest to use this information to impose a self-consistent BBN prior on YpY_p and determine its impact on parameter inference from simulated Planck data. We find that this approach can significantly improve bounds on cosmological parameters compared to an analysis which treats YpY_p as a free parameter, if the neutrino chemical potential is taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary value can seriously bias parameter estimates. Under the assumption of degenerate BBN (i.e., letting the neutrino chemical potential ξ\xi vary), the BBN prior's constraining power is somewhat weakened, but nevertheless allows us to constrain ξ\xi with an accuracy that rivals bounds inferred from present data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio

    Particle separation by phase modulated surface acoustic waves

    Get PDF
    High efficiency isolation of cells or particles from a heterogeneous mixture is a critical processing step in lab-on-a-chip devices. Acoustic techniques offer contactless and label-free manipulation, preserve viability of biological cells, and provide versatility as the applied electrical signal can be adapted to various scenarios. Conventional acoustic separation methods use time-of-flight and achieve separation up to distances of quarter wavelength with limited separation power due to slow gradients in the force. The method proposed here allows separation by half of the wavelength and can be extended by repeating the modulation pattern and can ensure maximum force acting on the particles. In this work, we propose an optimised phase modulation scheme for particle separation in a surface acoustic wave microfluidic device. An expression for the acoustic radiation force arising from the interaction between acoustic waves in the fluid was derived. We demonstrated, for the first time, that the expression of the acoustic radiation force differs in surface acoustic wave and bulk devices, due to the presence of a geometric scaling factor. Two phase modulation schemes are investigated theoretically and experimentally. Theoretical findings were experimentally validated for different mixtures of polystyrene particles confirming that the method offers high selectivity. A Monte-Carlo simulation enabled us to assess performance in real situations, including the effects of particle size variation and non-uniform acoustic field on sorting efficiency and purity, validating the ability to separate particles with high purity and high resolution

    Spin Dynamics near the Superconductor-to-Insulator Transition in Impurity-Doped YBa2Cu4O8

    Full text link
    We studied low-frequency spin dynamics near the impurity-induced superconductor-to-insulator transition for underdoped high-Tc superconductor YBa2(Cu1-xMx)4O8 (M=Ni, Zn) using the Cu nuclear quadrupole resonance (NQR) spin-echo technique. We observed remarkable suppression of the normal-state pseudo spin-gap and a loss of Cu NQR spectrum intensity at low temperatures around the critical impurity concentration.Comment: 6 pages, 4 figures. To be published in J. Phys. Soc. Jpn. Vol.70, No.7 (2001

    Transmission through quantum networks

    Full text link
    We propose a simple formalism to calculate the conductance of any quantum network made of one-dimensional quantum wires. We apply this method to analyze, for two periodic systems, the modulation of this conductance with respect to the magnetic field. We also study the influence of an elastic disorder on the periodicity of the AB oscillations and we show that a recently proposed localization mechanism induced by the magnetic field resists to such a perturbation. Finally, we discuss the relevance of this approach for the understanding of a recent experiment on GaAs/GaAlAs networks.Comment: 4 pages, 5 EPS figure

    Doping Dependence of Anisotropic Resistivities in Trilayered Superconductor Bi2Sr2Ca2Cu3O10+delta (Bi-2223)

    Full text link
    The doping dependence of the themopower, in-plane resistivity rho_ab(T), out-of-plane resistivity rho_c(T), and susceptibility has been systematically measured for high-quality single crystal Bi2Sr2Ca2Cu3O10+delta. We found that the transition temperature Tc and pseudogap formation temperature T_rho_c*, below which rho_c shows a typical upturn, do not change from their optimum values in the "overdoped" region, even though doping actually proceeds. This suggests that, in overdoped region, the bulk TcT_c is determined by the always underdoped inner plane, which have a large superconducting gap, while the carriers are mostly doped in the outer planes, which have a large phase stiffness.Comment: 5 pages, 4 figures. to be published in PR

    Algebraic damping in the one-dimensional Vlasov equation

    Get PDF
    We investigate the asymptotic behavior of a perturbation around a spatially non homogeneous stable stationary state of a one-dimensional Vlasov equation. Under general hypotheses, after transient exponential Landau damping, a perturbation evolving according to the linearized Vlasov equation decays algebraically with the exponent -2 and a well defined frequency. The theoretical results are successfully tested against numerical NN-body simulations, corresponding to the full Vlasov dynamics in the large NN limit, in the case of the Hamiltonian mean-field model. For this purpose, we use a weighted particles code, which allows us to reduce finite size fluctuations and to observe the asymptotic decay in the NN-body simulations.Comment: 26 pages, 8 figures; text slightly modified, references added, typos correcte
    corecore