35 research outputs found
Striatal Proteomic Analysis Suggests that First L-Dopa Dose Equates to Chronic Exposure
L-3,4-dihydroxypheylalanine (L-dopa)-induced dyskinesia represent a debilitating complication of therapy for Parkinson's disease (PD) that result from a progressive sensitization through repeated L-dopa exposures. The MPTP macaque model was used to study the proteome in dopamine-depleted striatum with and without subsequent acute and chronic L-dopa treatment using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The present data suggest that the dopamine-depleted striatum is so sensitive to de novo L-dopa treatment that the first ever administration alone would be able (i) to induce rapid post-translational modification-based proteomic changes that are specific to this first exposure and (ii), possibly, lead to irreversible protein level changes that would be not further modified by chronic L-dopa treatment. The apparent equivalence between first and chronic L-dopa administration suggests that priming would be the direct consequence of dopamine loss, the first L-dopa administrations only exacerbating the sensitization process but not inducing it
Multi-Level Interactions between the Nuclear Receptor TRα1 and the WNT Effectors β-Catenin/Tcf4 in the Intestinal Epithelium
Intestinal homeostasis results from complex cross-regulation of signaling pathways; their alteration induces intestinal tumorigenesis. Previously, we found that the thyroid hormone nuclear receptor TRα1 activates and synergizes with the WNT pathway, inducing crypt cell proliferation and promoting tumorigenesis. Here, we investigated the mechanisms and implications of the cross-regulation between these two pathways in gut tumorigenesis in vivo and in vitro. We analyzed TRα1 and WNT target gene expression in healthy mucosae and tumors from mice overexpressing TRα1 in the intestinal epithelium in a WNT-activated genetic background (vil-TRα1/Apc mice). Interestingly, increased levels of β-catenin/Tcf4 complex in tumors from vil-TRα1/Apc mice blocked TRα1 transcriptional activity. This observation was confirmed in Caco2 cells, in which TRα1 functionality on a luciferase reporter-assay was reduced by the overexpression of β-catenin/Tcf4. Moreover, TRα1 physically interacted with β-catenin/Tcf4 in the nuclei of these cells. Using molecular approaches, we demonstrated that the binding of TRα1 to its DNA target sequences within the tumors was impaired, while it was newly recruited to WNT target genes. In conclusion, our observations strongly suggest that increased β-catenin/Tcf4 levels i) correlated with reduced TRα1 transcriptional activity on its target genes and, ii) were likely responsible for the shift of TRα1 binding on WNT targets. Together, these data suggest a novel mechanism for the tumor-promoting activity of the TRα1 nuclear receptor
Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain
AbstractOmega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.Infrastructure de Recherche Translationnelle pour les Biothérapies en NeurosciencesProgram Initiative d’Excellenc
Thyroid hormones and their nuclear receptors: New players in intestinal epithelium stem cell biology?
Thyroid hormones participate in the development and homeostasis of several organs and tissues. It is well documented that they act via nuclear receptors, the TRs, which are transcription factors whose function is modulated by the hormone T3. Importantly, T3-induced physiological response within a cell depends on the specific TR expression and on the T3 bioavailability. However, in addition to this T3-dependent control of TR functionality, increasing data show that the action of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. By focusing on the intestinal epithelium of both amphibians and mammals we summarize here new data in support of a role for thyroid hormones and the TR nuclear receptors in stem cell biology. This new concept may be extended to other organs and have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer. © 2014 Springer.SCOPUS: re.jinfo:eu-repo/semantics/publishe
Thyroid hormone's action on progenitor/stem cell biology: New challenge for a classic hormone?
Background: Thyroid hormones are involved in developmental and homeostatic processes in several tissues. Their action results in different outcomes depending on the developmental stage, tissue and/or cellular context. Interestingly, their pleiotropic roles are conserved across vertebrates. It is largely documented that thyroid hormones act via nuclear receptors, the TRs, which are transcription factors and whose activity can be modulated by the local availability of the hormone T3. In the "classical view", the T3-induced physiological response depends on the expression of specific TR isoforms and the iodothyronine deiodinase selenoenzymes that control the local level of T3, thus TR activity. Scope of the Review: Recent data have clearly established that the functionality of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and propose a new and intriguing role for thyroid hormones in two selected examples. Major Conclusions: In the intestinal epithelium and the retina, TRα1 and TRβ2 are expressed at the level of the precursors where they induce cell proliferation and differentiation, respectively. Moreover, these different functions result from the integration of the hormone signal with other intrinsic pathways, which play a fundamental role in progenitor/stem cell physiology. General Significance: Taken together, the interaction of TRs with other signaling pathways, specifically in stem/progenitor cells, is a new concept that may have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer. This article is part of a Special Issue entitled Thyroid hormone signalling. © 2012 Elsevier B.V. All rights reserved.SCOPUS: re.jinfo:eu-repo/semantics/publishe
The thyroid hormone receptor-{alpha} (TR{alpha}) gene encoding TR{alpha}1 controls deoxyribonucleic acid damage-induced tissue repair
International audienceThe thyroid hormone (TH) controls, via its nuclear receptor, TH receptor-alpha 1 (TR alpha 1), intestinal crypt cell proliferation in the mouse. In order to understand whether this receptor also plays a role in intestinal regeneration after DNA damage, we applied a protocol of gamma-ray irradiation and monitored cell proliferation and apoptosis at several time points. In wild-type mice, the dose of 8 Gy induced cell cycle arrest and apoptosis in intestinal crypts a few hours after irradiation. This phenomenon reverted 48 h after irradiation. TR alpha(0/0) mutant mice displayed a constant low level of proliferating cells and a high apoptosis rate during the period of study. At the molecular level, in TR alpha(0/0) animals we observed a delay in the p53 phosphorylation induced by DNA damage. In our search for the expression of the protein kinases responsible for p53 phosphorylation upon irradiation, we have focused on DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The number of cells expressing DNA-PKcs in crypts remained high 48 h after irradiation, specifically in TR alpha mutants. Altogether, in TR alpha(0/0) animals the rate of apoptosis in crypt cells remained high, apparently due to an elevated number of cells still presenting DNA damage. In conclusion, the TR alpha gene plays a role in crypt cell homeostasis by regulating the rate of cell renewal and apoptosis induced by DNA damage
The frizzled-related sFRP2 gene is a target of thyroid hormone receptor α1 and activates β-catenin signaling in mouse intestine
International audienceThe thyroid hormone receptor TR alpha 1 regulates intestinal development and homeostasis by controlling epithelial proliferation in the crypts. This involves positive control of the Wnt/beta-catenin pathway. To further investigate the effect of thyroid hormone-TR alpha 1 signaling on the intestinal epithelium proliferating compartment, we performed a comparative transcription profile analysis on laser microdissected crypt cells recovered from wild type animals with normal or perturbed hormonal status, as well as from TR knock-out mice. Statistical analysis and an in silico approach allowed us to identify 179 differentially regulated genes and to group them into organized functional networks. We focused on the "cell cycle/cell proliferation" network and, in particular, on the Frizzled-related protein sFRP2, whose expression was greatly increased in response to thyroid hormones. In vitro and in vivo analyses showed that the expression of sFRP2 is directly regulated by TR alpha 1 and that it activates beta-catenin signaling via Frizzled receptors. Indeed, sFRP2 stabilizes beta-catenin, activates its target genes, and enhances cell proliferation. In conclusion, these new data, in conjunction with our previous results, indicate a complex interplay between TR alpha 1 and components of the Wnt/beta-catenin pathway. Moreover, we describe in this study a novel mechanism of action of sFRP2, responsible for the activation of beta-catenin signaling
Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen.
Viruses are strictly dependent on cells to propagate and many incorporate host proteins in their viral particles, but the significance of this incorporation is poorly understood. Recently, we performed the first comprehensive characterization of the mature herpes simplex virus type 1 (HSV-1) in which up to 49 distinct cellular proteins were identified by mass spectrometry. In the present study, we sought to identify if these cellular factors are relevant for the HSV-1 life cycle. To this end, we performed a small interfering RNA functional screen and found that 15 of these host proteins altered HSV-1 proliferation in cell culture, without any significant effect on cell viability. Moreover, the siRNA used had no negative consequences for Adenovirus type 5 propagation (with one exception) indicating that the modulation was specific for HSV-1 and not merely due to unhealthy cells. The positive host proteins include several Rab GTPases and other intracellular transport components as well as proteins involved in signal transduction, gene regulation and immunity. Remarkably, in most cases when virions were depleted for one of the above proteins, they replicated more poorly in subsequent infections in wild type cells. This highlights for the first time that both the cellular and virion-associated pools of many of these proteins actively contribute to viral propagation. Altogether, these findings underscore the power and biological relevance of combining proteomics and RNA interference to identify novel host-pathogen interactions
The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation
International audienceThe RNA-binding protein Musashi-1 (Msi1) has been proposed as a marker of intestinal epithelial stem cells. These cells are responsible for the continuous renewal of the intestinal epithelium. Although the function of Msi1 has been studied in several organs from different species and in mammalian cell lines, its function and molecular regulation in mouse intestinal epithelium progenitor cells are still undefined. We describe here that, in these cells, the expression of Msi1 is regulated by the canonical Wnt pathway, through a mechanism involving a functional Tcf/Lef binding site on its promoter. An in vitro study in intestinal epithelium primary cultures showed that Msi1 overexpression promotes progenitor proliferation and activates Wnt and Notch pathways. Moreover, Msi1-overexpressing cells exhibit tumorigenic properties in xenograft experiments. These data point to a positive feedback loop between Msi1 and Wnt in intestinal epithelial progenitors. They also suggest that Msi1 has oncogenic properties in these cells, probably through induction of both the Wnt and Notch pathways