6,990 research outputs found

    Ab-initio Gutzwiller method: first application to Plutonium

    Get PDF
    Except for small molecules, it is impossible to solve many electrons systems without imposing severe approximations. If the configuration interaction approaches (CI) or Coupled Clusters techniques \cite{FuldeBook} are applicable for molecules, their generalization for solids is difficult. For materials with a kinetic energy greater than the Coulomb interaction, calculations based on the density functional theory (DFT), associated with the local density approximation (LDA) \cite{Hohenberg64, Kohn65} give satisfying qualitative and quantitative results to describe ground state properties. These solids have weakly correlated electrons presenting extended states, like spsp materials or covalent solids. The application of this approximation to systems where the wave functions are more localized (dd or ff-states) as transition metals oxides, heavy fermions, rare earths or actinides is more questionable and can even lead to unphysical results : for example, insulating FeO and CoO are predicted to be metalic by the DFT-LDA..

    Electronic transport in AlMn(Si) and AlCuFe quasicrystals: Break-down of the semiclassical model

    Full text link
    The semi-classical Bloch-Boltzmann theory is at the heart of our understanding of conduction in solids, ranging from metals to semi-conductors. Physical systems that are beyond the range of applicability of this theory are thus of fundamental interest. It appears that in quasicrystals and related complex metallic alloys, a new type of break-down of this theory operates. This phenomenon is related to the specific propagation of electrons. We develop a theory of quantum transport that applies to a normal ballistic law but also to these specific diffusion laws. As we show phenomenological models based on this theory describe correctly the anomalous conductivity in quasicrystals. Ab-initio calculations performed on approximants confirm also the validity of this anomalous quantum diffusion scheme. This provides us with an ab-initio model of transport in approximants such as alpha-AlMnSi and AlCuFe 1/1 cubic approximant.Comment: 11 pages, 5 figure

    Concurrence in collective models

    Full text link
    We review the entanglement properties in collective models and their relationship with quantum phase transitions. Focusing on the concurrence which characterizes the two-spin entanglement, we show that for first-order transition, this quantity is singular but continuous at the transition point, contrary to the common belief. We also propose a conjecture for the concurrence of arbitrary symmetric states which connects it with a recently proposed criterion for bipartite entanglement.Comment: 8 pages, 2 figures, published versio

    Gutzwiller density functional theory for correlated electron systems

    Full text link
    We develop a new density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wavefunction which obeys exactly the Gutzwiller approximation for all one particle operators. The solution of the many electron problem is mapped onto the self-consistent solution of a set of single particle Schroedinger equations analogous to standard DFT-LDA calculations.Comment: 4 page

    A Heuristic Framework for Next-Generation Models of Geostrophic Convective Turbulence

    Get PDF
    Many geophysical and astrophysical phenomena are driven by turbulent fluid dynamics, containing behaviors separated by tens of orders of magnitude in scale. While direct simulations have made large strides toward understanding geophysical systems, such models still inhabit modest ranges of the governing parameters that are difficult to extrapolate to planetary settings. The canonical problem of rotating Rayleigh-B\'enard convection provides an alternate approach - isolating the fundamental physics in a reduced setting. Theoretical studies and asymptotically-reduced simulations in rotating convection have unveiled a variety of flow behaviors likely relevant to natural systems, but still inaccessible to direct simulation. In lieu of this, several new large-scale rotating convection devices have been designed to characterize such behaviors. It is essential to predict how this potential influx of new data will mesh with existing results. Surprisingly, a coherent framework of predictions for extreme rotating convection has not yet been elucidated. In this study, we combine asymptotic predictions, laboratory and numerical results, and experimental constraints to build a heuristic framework for cross-comparison between a broad range of rotating convection studies. We categorize the diverse field of existing predictions in the context of asymptotic flow regimes. We then consider the physical constraints that determine the points of intersection between flow behavior predictions and experimental accessibility. Applying this framework to several upcoming devices demonstrates that laboratory studies may soon be able to characterize geophysically-relevant flow regimes. These new data may transform our understanding of geophysical and astrophysical turbulence, and the conceptual framework developed herein should provide the theoretical infrastructure needed for meaningful discussion of these results.Comment: 36 pages, 8 figures. CHANGES: in revision at Geophysical and Astrophysical Fluid Dynamic

    Absorbing Phase Transitions of Branching-Annihilating Random Walks

    Full text link
    The phase transitions to absorbing states of the branching-annihilating reaction-diffusion processes mA --> (m+k)A, nA --> (n-l)A are studied systematically in one space dimension within a new family of models. Four universality classes of non-trivial critical behavior are found. This provides, in particular, the first evidence of universal scaling laws for pair and triplet processes.Comment: 4 pages, 4 figure

    Phases of granular segregation in a binary mixture

    Full text link
    We present results from an extensive experimental investigation into granular segregation of a shallow binary mixture in which particles are driven by frictional interactions with the surface of a vibrating horizontal tray. Three distinct phases of the mixture are established viz; binary gas (unsegregated), segregation liquid and segregation crystal. Their ranges of existence are mapped out as a function of the system's primary control parameters using a number of measures based on Voronoi tessellation. We study the associated transitions and show that segregation can be suppressed is the total filling fraction of the granular layer, CC, is decreased below a critical value, CcC_{c}, or if the dimensionless acceleration of the driving, γ\gamma, is increased above a value γc\gamma_{c}.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    Dark energy with non-adiabatic sound speed: initial conditions and detectability

    Full text link
    Assuming that the universe contains a dark energy fluid with a constant linear equation of state and a constant sound speed, we study the prospects of detecting dark energy perturbations using CMB data from Planck, cross-correlated with galaxy distribution maps from a survey like LSST. We update previous estimates by carrying a full exploration of the mock data likelihood for key fiducial models. We find that it will only be possible to exclude values of the sound speed very close to zero, while Planck data alone is not powerful enough for achieving any detection, even with lensing extraction. We also discuss the issue of initial conditions for dark energy perturbations in the radiation and matter epochs, generalizing the usual adiabatic conditions to include the sound speed effect. However, for most purposes, the existence of attractor solutions renders the perturbation evolution nearly independent of these initial conditions.Comment: 16 pages, 2 figures, version accepted in JCA

    Field-induced local moments around nonmagnetic impurities in metallic cuprates

    Full text link
    We consider a defect in a strongly correlated host metal and discuss, within a slave boson mean field formalism for the ttJt-t'-J model, the formation of an induced paramagnetic moment which is extended over nearby sites. We study in particular an impurity in a metallic band, suitable for modelling the optimally doped cuprates, in a regime where the impurity moment is paramagnetic. The form of the local susceptibility as a function of temperature and doping is found to agree well with recent NMR experiments, without including screening processes leading to the Kondo effect.Comment: 7 pages, submitted to Phys Rev

    A nonlinear detection algorithm for periodic signals in gravitational wave detectors

    Get PDF
    We present an algorithm for the detection of periodic sources of gravitational waves with interferometric detectors that is based on a special symmetry of the problem: the contributions to the phase modulation of the signal from the earth rotation are exactly equal and opposite at any two instants of time separated by half a sidereal day; the corresponding is true for the contributions from the earth orbital motion for half a sidereal year, assuming a circular orbit. The addition of phases through multiplications of the shifted time series gives a demodulated signal; specific attention is given to the reduction of noise mixing resulting from these multiplications. We discuss the statistics of this algorithm for all-sky searches (which include a parameterization of the source spin-down), in particular its optimal sensitivity as a function of required computational power. Two specific examples of all-sky searches (broad-band and narrow-band) are explored numerically, and their performances are compared with the stack-slide technique (P. R. Brady, T. Creighton, Phys. Rev. D, 61, 082001).Comment: 9 pages, 3 figures, to appear in Phys. Rev.
    corecore