13 research outputs found

    Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human

    Get PDF
    In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far

    Measurement in vivo of cell turnover in patients with chronic lymphocytic leukaemia

    Full text link
    Chronic lymphocytic leukaemia (CLL) is a disease characterized by abnormal accumulation of B cells in the blood, bone marrow, lymph nodes and spleen. Several decades ago, it was concluded that CLL lymphocytes might be unable to proliferate in vivo but a recent study performed in vivo in patients with CLL has shown in contrast that these cells proliferate. However, an important and still unanswered question is whether CLL cells proliferate faster or slower compared to their normal counterparts. In this context, the turnover of CLL cell population was compared to the kinetics parameters of normal B lymphocytes after labelling with deuterium glucose. We have also compared the metabolic activity of CLL cells with B lymphocytes from healthy subjects using a new method for measuring RNA turnover in vivo. Based on these observations, we found that leukaemic cells proliferate less frequently than healthy patient and that metabolic activity via measurement of RNA turnover rate is significantly reduced in CLL patients

    In vivo ribosomal RNA turnover is down-regulated in leukaemic cells in chronic lymphocytic leukaemia.

    No full text
    LetterResearch Support, Non-U.S. Gov'tFLWINSCOPUS: le.jinfo:eu-repo/semantics/publishe

    Measurement of ribosomal RNA turnover in vivo by use of deuterium-labeled glucose.

    No full text
    BACKGROUND: Most methods for estimation of rates of RNA production are not applicable in human in vivo clinical studies. We describe here an approach for measuring ribosomal RNA turnover in vivo using [6,6-(2)H(2)]-glucose as a precursor for de novo RNA synthesis. Because this method involves neither radioactivity nor toxic metabolites, it is suitable for human studies. METHODS: For method development in vitro, a lymphocyte cell line (PM1) was cultured in the presence of [6,6-(2)H(2)]-glucose. RNA was extracted, hydrolyzed enzymatically to ribonucleosides, and derivatized to either the aldonitrile tetra-acetate or the pentafluoro triacetate derivative of the pentose before GC-MS. We identified optimum derivatization and analysis conditions and demonstrated quantitative incorporation of deuterium from glucose into RNA of dividing cells. RESULTS: Pilot clinical studies demonstrated the applicability of this approach to blood leukocytes and solid tissues. A patient with chronic lymphocytic leukemia received [6,6-(2)H(2)]-glucose (1 g/kg) orally in aliquots administered every 30 min for a period of 10 h. When we analyzed CD3(-) B cells that had been purified by gradient centrifugation and magnetic-bead adhesion, we observed deuterium enrichment, a finding consistent with a ribosomal RNA production rate of about 7%/day, despite the slow division rates observed in concurrent DNA-labeling analysis. Similarly, in 2 patients with malignant infiltration of lymph nodes, administration of [6,6-(2)H(2)]-glucose (by intravenous infusion for 24 h) before excision biopsy allowed estimation of DNA and RNA turnover in lymph node samples. CONCLUSIONS: Our study results demonstrate the proof-of-principle that deuterium-labeled glucose may be used to analyze RNA turnover, in addition to DNA production/cell proliferation, in clinical samples.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Reduction of B cell turnover in chronic lymphocytic leukaemia.

    No full text
    Whether chronic lymphocytic leukaemia (CLL) is a latent or a proliferating disease has been intensively debated. Whilst the dogma that CLL results from accumulation of dormant lymphocytes is supported by the unresponsiveness of leukaemic cells to antigens and polyclonal activators, recent in vivo kinetic measurements indicate that B lymphocytes do divide at significant rates in CLL. However, an important and still unanswered question is whether CLL cells proliferate faster or slower compared with their normal counterparts. This report addressed directly this point and compared B-cell kinetics in CLL subjects and healthy controls, using a pulse-chase approach based on incorporation of deuterium from 6,6-(2)H(2)-glucose into DNA. We confirmed that B cells proliferated at significant levels in CLL but found that the proliferation rates were reduced compared with healthy subjects (mean 0.47 vs. 1.31%/d respectively, P = 0.007), equivalent to an extended doubling time of circulating B cells (147 d vs. 53 d). In conclusion, CLL B cells proliferate at reduced levels compared with healthy controls. CLL is thus characterized by an aberrant B-cell kinetics with a decrease in cell turnover, an observation that may impact on elaboration of efficient therapeutic strategies.Journal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe

    Emphasis on cell turnover in two hosts infected by bovine leukemia virus: a rationale for host susceptibility to disease.

    Full text link
    Bovine leukemia virus (BLV) is a deltaretrovirus that infects and induces accumulation of B-lymphocytes in the peripheral blood and lymphoid tissues of cattle, leading to leukemia/lymphoma. BLV can also be experimentally transmitted to sheep, in which disease appears earlier and at higher frequencies. Abnormal accumulation of leukemic B-lymphocytes results from an alteration of different parameters that include cell proliferation and death as well as migration to lymphoid tissues. Interestingly, B lymphocyte turnover is increased in BLV-infected sheep but reduced in cattle, revealing a potential relationship between cell kinetics and disease progression

    Measurement of proliferation and disappearance of rapid turnover cell populations in human studies using deuterium-labeled glucose.

    No full text
    Cell proliferation may be measured in vivo by quantifying DNA synthesis with isotopically labeled deoxyribonucleotide precursors. Deuterium-labeled glucose is one such precursor which, because it achieves high levels of enrichment for a short period, is well suited to the study of rapidly dividing cells, in contrast to the longer term labeling achieved with heavy water ((2)H(2)O). As deuterium is non-radioactive and glucose can be readily administered, this approach is suitable for clinical studies. It has been widely applied to investigate human lymphocyte proliferation, but solid tissue samples may also be analyzed. Rate, duration and route (intravenous or oral) of [6,6-(2)H(2)]-glucose administration should be adapted to the target cell of interest. For lymphocytes, cell separation is best achieved by fluorescence activated cell sorting (FACS), although magnetic bead separation is an alternative. DNA is then extracted, hydrolyzed enzymatically and analyzed by gas chromatography mass spectrometry (GC/MS). Appropriate mathematical modeling is critical to interpretation. Typical time requirements are as follows: labeling, 10-24 h; sampling, approximately 3 weeks; DNA extraction/derivatization, 2-3 d; and GC/MS analysis, approximately 2 d
    corecore