19 research outputs found

    Learning mitigates genetic drift.

    Get PDF
    Genetic drift is a basic evolutionary principle describing random changes in allelic frequencies, with far-reaching consequences in various topics ranging from species conservation efforts to speciation. The conventional approach assumes that genetic drift has the same effect on all populations undergoing the same changes in size, regardless of different non-reproductive behaviors and history of the populations. However, here we reason that processes leading to a systematic increase of individuals` chances of survival, such as learning or immunological memory, can mitigate loss of genetic diversity caused by genetic drift even if the overall mortality rate in the population does not change. We further test this notion in an agent-based model with overlapping generations, monitoring allele numbers in a population of prey, either able or not able to learn from successfully escaping predators' attacks. Importantly, both these populations start with the same effective size and have the same and constant overall mortality rates. Our results demonstrate that even under these conditions, learning can mitigate loss of genetic diversity caused by drift, by creating a pool of harder-to-die individuals that protect alleles they carry from extinction. Furthermore, this effect holds regardless if the population is haploid or diploid or whether it reproduces sexually or asexually. These findings may be of importance not only for basic evolutionary theory but also for other fields using the concept of genetic drift

    Sex and age differences in sST2 in cardiovascular disease

    Get PDF
    AimsThe goal of this study was to determine whether sex and age differences exist for soluble ST2 (sST2) for several cardiovascular diseases (CVDs).MethodsWe examined sST2 levels using an ELISA kit for myocarditis (n = 303), cardiomyopathy (n = 293), coronary artery disease (CAD) (n = 239), myocardial infarct (MI) (n = 159), and congestive heart failure (CHF) (n = 286) and compared them to controls that did not have CVDs (n = 234).ResultsMyocarditis occurred in this study in relatively young patients around age 40 while the other CVDs occurred more often in older individuals around age 60. We observed a sex difference in sST2 by age only in myocarditis patients (men aged 38, women 46, p = 0.0002), but not for other CVDs. Sera sST2 levels were significantly elevated compared to age-matched controls for all CVDs: myocarditis (p ≤ 0.0001), cardiomyopathy (p = 0.0009), CAD (p = 0.03), MI (p = 0.034), and CHF (p < 0.0001) driven by elevated sST2 levels in females for all CVDs except myocarditis, which was elevated in both females (p = 0.002) and males (p ≤ 0.0001). Sex differences in sST2 levels were found for myocarditis and cardiomyopathy but no other CVDs and were higher in males (myocarditis p = 0.0035; cardiomyopathy p = 0.0047). sST2 levels were higher in women with myocarditis over 50 years of age compared to men (p = 0.0004) or women under 50 years of age (p = 0.015). In cardiomyopathy and MI patients, men over 50 had significantly higher levels of sST2 than women (p = 0.012 and p = 0.043, respectively) but sex and age differences were not detected in other CVDs. However, women with cardiomyopathy that experienced early menopause had higher sST2 levels than those who underwent menopause at a natural age range (p = 0.02).ConclusionWe found that sex and age differences in sera sST2 exist for myocarditis, cardiomyopathy, and MI, but were not observed in other CVDs including CAD and CHF. These initial findings in patients with self-reported CVDs indicate that more research is needed into sex and age differences in sST2 levels in individual CVDs

    Calculating Stress: From Entropy to a Thermodynamic Concept of Health and Disease.

    No full text
    To date, contemporary science has lacked a satisfactory tool for the objective expression of stress. This text thus introduces a new-thermodynamically derived-approach to stress measurement, based on entropy production in time and independent of the quality or modality of a given stressor or a combination thereof. Hereto, we propose a novel model of stress response based on thermodynamic modelling of entropy production, both in the tissues/organs and in regulatory feedbacks. Stress response is expressed in our model on the basis of stress entropic load (SEL), a variable we introduced previously; the mathematical expression of SEL, provided here for the first time, now allows us to describe the various states of a living system, including differentiating between states of health and disease. The resulting calculation of stress response regardless of the type of stressor(s) in question is thus poised to become an entirely new tool for predicting the development of a living system

    Physiological evidence of stress reduction during a summer Antarctic expedition with a significant influence of previous experience and vigor

    No full text
    Abstract Antarctica provides a unique environment for studying human adaptability, characterized by controlled conditions, limited sensory stimulation, and significant challenges in logistics and communication. This longitudinal study investigates the relationship between stress indicators, with a specific focus on mean sleep heart rate, during a COVID-19 quarantine and subsequent 83 days long summer Antarctic expedition at the J. G. Mendel Czech Antarctic Station. Our novel approach includes daily recordings of sleep heart rate and weekly assessments of emotions, stress, and sleep quality. Associations between variables were analyzed using the generalized least squares method, providing unique insights into nuances of adaptation. The results support previous findings by providing empirical evidence on the stress reducing effect of Antarctic summer expedition and highlight the importance of previous experience and positive emotions, with the novel contribution of utilizing physiological data in addition to psychological measures. High-frequency sampling and combination of psychological and physiological data addresses a crucial gap in the research of stress. This study contributes valuable knowledge to the field of psychophysiology and has implications for expedition planners, research organizations, teams in action settings, pandemic prevention protocols, global crises, and long-duration spaceflight missions. Comprehensive insights promote the well-being and success of individuals in extreme conditions

    Matrix Metalloproteinase 13 Genotype in rs640198 Polymorphism Is Associated with Severe Coronary Artery Disease

    No full text
    Atherosclerosis as a main etiopathogenetic source for coronary artery disease (CAD) development is intimately related to dynamic changes in the extracellular matrix (ECM). Elevated levels of MMP-13 have been observed in human atherosclerotic plaques which could also involve variability in MMP-13 gene. The aim of the study was to associate rs640198 polymorphism with CAD and/or with its severity
    corecore