7 research outputs found
Morphological and molecular study of proteins involved in the processes of invasion, migration and angiogenesis in gliomas treated with gamma-linolenic acid.
O glioblastoma multiforme (GBM) é a forma mais maligna de tumor cerebral, originado de células astrocíticas e caracterizado pela intensa proliferação, angiogênese e invasão celular pelo parênquima cerebral normal. O ácido gama-linolênico (GLA) mostrou ter ações anti-tumorais, nos processos de proliferação, migração e angiogênese. Utilizou-se o modelo ortotópico de GBM de rato (C6) e o modelo ex vivo tratados com GLA para análise de migração e proliferação celular. Foi observada uma redução da imunomarcação do fator de crescimento para endotélio vascular (VEGF), seu receptor Flt-1 e da metaloproteinase-2 de matriz, com consequente diminuição de vasos após o tratamento com GLA. No modelo ex vivo observou que o GLA reduziu a distância de migração e a mitose das células tumorais e também causou aumento das células tumorais em processo de apoptose. Os resultados revelaram que o GLA foi capaz de modular a expressão de algumas proteínas envolvidas nos processos angiogênico, migratório e proliferativo do GBM, o que sugere a sua utilização no tratamento desta patologia.Glioblastoma multiforme (GBM) is the most malignant form of brain tumour originating from astrocytes and is characterized by intense proliferation, angiogenesis and cell invasion through the normal brain parenchyma. Gamma-linolenic acid (GLA) has anti-tumour activities in the processes of proliferation, migration and angiogenesis. This study used the orthotopic GBM rat model (C6) and ex vivo model treated with GLA to analyze cell migration and proliferation. Decreased immunostaining was observed for vascular endothelial growth factor (VEGF), its receptor Flt-1 and matrix metalloproteinase-2, with consequent reduction of blood vessels after treatment with GLA. In the ex vivo model GLA reduced the migration distance and mitosis of tumor cells and increased tumour cell apoptosis. The results revealed that GLA was able to modulate the expression of several proteins involved in angiogenesis, migration and proliferation in GBM, supporting the use of GLA in the treatment of this disease
Gamma-linolenic Acid Alters Ku80, E2F1, and Bax Expression and Induces Micronucleus Formation in C6 Glioma Cells In Vitro
Gamma-linolenic acid (GLA) is an inhibitor of tumor cell proliferation in both in vitro and in vivo conditions. The aim of this study was to investigate the effects of 150 mu M GLA on the expression of E2F1, cyclin D1, bax, bcl2, Ku70, and Ku80 in C6 rat glioma cells. The Ku proteins were chosen as previous studies have shown that loss or reduction in their expression causes increased DNA damage and micronucleus formation in the presence of radiation. The fact that GLA exposure is known to enhance the efficacy of radiation treatment raised the question whether the Ku proteins could be involved in this effect as seen for other molecules such as roscovitine and flavopiridol. GLA altered the mRNA expression of E2F1, cyclin D1, and bax, but no changes were found for bcl2, Ku70, and Ku80. Alterations in protein expression were observed for bax, Ku80, and E2F1. The 45% decrease in E2F1 expression was proportional to decreased cell proliferation (44%). Morphological analysis found a 25% decrease in mitotic activity in the GLA-treated cells, which was accompanied by a 49% decrease in S-phase by FACS analysis. A 39% increase in the number of micronuclei detected by Hoechst fluorescence points to GLA`s effects on cell division even at concentrations that do not produce significant increases in apoptosis. Most important was the finding that Ku80 expression, a critical protein involved in DNA repair as a heterodimer with Ku70, was decreased by 71%. It is probable that reduced Ku80 is responsible for the increase in micronucleus formation in GLA-treated cells in a similar manner to that found in Ku80 null cells exposed to radiation. The decreased expression of Ku80 and E2F1 could make cells more susceptible to radiotherapy and chemotherapy. (C) 2009 IUBM
Cyclooxygenase Inhibition Alters Proliferative, Migratory, and Invasive Properties of Human Glioblastoma Cells In Vitro
Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development
4-Nerolidylcatechol induces autophagy in human glioblastoma cells
ABSTRACT Gliomas account for the majority of primary malignant brain tumors and present invasive behavior into adjacent healthy tissue. While 4-NC had previously shown to induce apoptotic cell death in a melanoma model, for the glioma model described in this paper 4-NC is cytotoxic for the cells with the induction of the autophagic pathway. Trypan blue exclusion assay showed that 4-NC was cytotoxic in a dose-dependent manner for A172 and T98G cell lines. IC10 and IC50 values were at 32 µM and 41 µM for A172 and T98G respectively. Inhibition of cell proliferation was observed by total cell counts and by cell cycle analysis by flow cytometry, with cell cycle arrest of A172 and T98G cell lines respectively in the G1/G0 and S phases of the cell cycle. 4-NC induced up-regulation of autophagic pathways, as shown by immunoblotting for LC3-I/II, Real-Time PCR for ATG-7 and Beclin-1 genes, and by fluorescence microscopy observation of autophagic vacuoles in cells transfected with GFP-LC3 and electron microscopy. Glioma cells concomitantly treated with 4-NC and 3-MA, an inhibitor of the autophagic process, are more sensible to cell death, suggesting that autophagy protects the cells from the action of 4-NC
Democratization of the teaching of Morphological Sciences project: promoting acessibility for visually impaired people
In Brazil, although access to education is guaranteed by law, the inclusion of disabled people in the educational system is not occurring at the necessary speed, either due to lack of educational resources or lack of adequate training of educators. The extension project Democratization of the teaching of morphological sciences: promoting accessibility for visually impaired people aims to research and develop adequate didactic material, low of cost, and easy to reproduce, for the teaching of cellular biology and histology to the visually impaired. The tactile matrices, forms of representing structures with the use of materials with different textures and reliefs, were the didactic tools chosen. At present, tactile matrices of various cells of biological tissues are being made and tested. The results obtained will be published with the confection of an atlas of morphology and the creation of the electronic website of the project
4-Nerolidylcatechol induces autophagy in human glioblastoma cells
<div><p>ABSTRACT Gliomas account for the majority of primary malignant brain tumors and present invasive behavior into adjacent healthy tissue. While 4-NC had previously shown to induce apoptotic cell death in a melanoma model, for the glioma model described in this paper 4-NC is cytotoxic for the cells with the induction of the autophagic pathway. Trypan blue exclusion assay showed that 4-NC was cytotoxic in a dose-dependent manner for A172 and T98G cell lines. IC10 and IC50 values were at 32 µM and 41 µM for A172 and T98G respectively. Inhibition of cell proliferation was observed by total cell counts and by cell cycle analysis by flow cytometry, with cell cycle arrest of A172 and T98G cell lines respectively in the G1/G0 and S phases of the cell cycle. 4-NC induced up-regulation of autophagic pathways, as shown by immunoblotting for LC3-I/II, Real-Time PCR for ATG-7 and Beclin-1 genes, and by fluorescence microscopy observation of autophagic vacuoles in cells transfected with GFP-LC3 and electron microscopy. Glioma cells concomitantly treated with 4-NC and 3-MA, an inhibitor of the autophagic process, are more sensible to cell death, suggesting that autophagy protects the cells from the action of 4-NC.</p></div