116 research outputs found

    Clinical profile of 62 cases of sexual differentiation disorders

    Get PDF
    OBJECTIVE: To report patients with ambiguous genitalia assisted at the State Institute of Diabetes and Endocrinology of Rio de Janeiro, Brazil, in the last five years. METHODS: Retrospective chart review of all cases of ambiguous genitalia, classified according to Danish criteria (1982), who attended follow-up visits in the last five years. The oldest record is from 1981 and the most recent one, 2006. RESULTS: 62 patients with ambiguous genitalia were found: 26 of them assigned as females and 36 as males. The most frequent diagnosis was congenital adrenal hyperplasia (33.9%), followed by syndromic diseases (14.5%) and gonadal dysgenesis (9.7%). The majority of patients with ambiguous genitalia were detected at birth, however, the mean age at the diagnosis was 7.2 years (zero to 42 years). CONCLUSIONS: Genital ambiguity is not a specific disease, but a set of problems that directs the physician to search specific diagnosis. The frequency of this condition depends on the diagnostic criteria used. Adopting amplified criteria in order to diagnose genital ambiguity will increase the possibility of early detention and adequate handling of these patients.OBJETIVO: Descrever o perfil clínico dos casos de distúrbios da diferenciação sexual em acompanhamento no Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, no Rio de Janeiro, nos últimos cinco anos. MÉTODOS: Revisão dos prontuários dos pacientes, com o diagnóstico de genitália ambígua em acompanhamento nos últimos cinco anos, segundo os critérios clínicos descritos por Danish, em 1982. O registro mais antigo foi feito em 1981 e o mais recente de junho de 2006. RESULTADOS: Foram encontrados 62 casos de genitália ambígua: 26 com registro do sexo feminino e 36 com registro do sexo masculino. O diagnóstico mais freqüente foi o de hiperplasia congênita de supra-renal (33,9%), seguido de quadros sindrômicos (14,5%) e disgenesias gonadais (9,7%). A média de idade ao diagnóstico foi de 7,2 anos (de zero a 42 anos). CONCLUSÕES: A ambigüidade genital não é uma doença específica, mas um conjunto de alterações que direcionam o clínico a buscar diagnósticos específicos. A freqüência dessa afecção depende dos critérios diagnósticos utilizados. A adoção de critérios amplos aumenta a chance de detecção precoce do quadro bem como de cuidado adequado a crianças com distúrbios da diferenciação sexual.32132

    Achados clínicos e genéticos de cinco pacientes com anomalias relacionadas ao gene WT1

    Get PDF
    AIM: To present phenotypic variability of WT1-related disorders. METHODS: Description of clinical and genetic features of five 46,XY patients with WT1 anomalies. RESULTS: Patient 1: newborn with genital ambiguity; he developed Wilms tumor (WT) and chronic renal disease and died at the age of 10 months; the heterozygous 1186G>A mutation compatible with Denys-Drash syndrome was detected in this child. Patients 2 and 3: adolescents with chronic renal disease, primary amenorrhea and hypergonadotrophic hypogonadism; patient 2 had a gonadoblastoma. The heterozygous IVS9+4, C>T mutation, compatible with Frasier syndrome was detected. Patient 4: 9-year-old boy with aniridia, genital ambiguity, dysmorphisms and mental deficiency; a heterozygous 11p deletion, compatible with WAGR syndrome was detected. Patient 5: 2 months old, same diagnosis of patient 4; he developed WT at the age of 8 months. CONCLUSIONS: Constitutional abnormalities of WT1 cause gonadal and renal anomalies and predisposition to neoplasia and must be investigated in patients with ambiguous genitalia, chronic renal disease and(or) Wilms tumors; primary amenorrhea with chronic renal disease; and aniridia, genital ambiguity and dysmorphisms.OBJETIVO: Descrever a variabilidade fenotípica das anomalias relacionadas ao WT1. MÉTODOS: Descrição das características clínicas e genéticas de cinco pacientes 46,XY com anomalias no WT1. RESULTADOS: Paciente 1: Recém-nascido com ambigüidade genital desenvolveu tumor de Wilms (TW) e insuficiência renal crônica (IRC), com óbito aos 10 meses. Detectada a mutação 1186G>A em heterozigose, compatível com síndrome de Denys-Drash. Pacientes 2 e 3: Adolescentes com IRC, amenorréia primária e hipogonadismo hipergonadotrófico; a paciente 2 apresentava gonadoblastoma. Ambas apresentavam mutação IVS9+4, C>T em heterozigose, característica da síndrome de Frasier. Paciente 4: Idade 9 anos, aniridia, ambigüidade genital, dismorfismos e deficiência mental; deleção 11p, compatível com síndrome WAGR foi encontrada em heterozigose. Paciente 5: Dois meses, mesmo diagnóstico do paciente 4, desenvolveu TW aos 8 meses. CONCLUSÕES: Alterações constitucionais do WT1 determinam anomalias gonadais, renais e predisposição a neoplasias; devem ser pesquisadas em casos de ambigüidade genital associada a IRC e(ou) TW; de amenorréia primária com IRC; e aniridia, ambigüidade genital e dismorfismos.1236124

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF
    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict thatmost of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century

    Estimating the global conservation status of more than 15,000 Amazonian tree species

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore