13 research outputs found
Naringenin-functionalized multi-walled carbon nanotubes: a potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells
Multi-walled carbon nanotubes functionalized with naringenin have been developed as new drug carriers to improve the performance of lung cancer treatment. The nanocarrier was characterized by Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy, Raman Spectroscopy, and Differential Scanning Calorimetry (DSC). Drug release rates were determined in vitro by the dialysis method. The cytotoxic profile was evaluated using the MTT assay, against a human skin cell line (hFB) as a model for normal cells, and against an adenocarcinomic human alveolar basal epithelial (A569) cell line as a lung cancer in vitro model. The results demonstrated that the functionalization of carbon nanotubes with naringenin occurred by non-covalent interactions. The release profiles demonstrated a pH-responsive behavior, showing a prolonged release in the tumor pH environment. The naringenin-functionalized carbon nanotubes showed lower cytotoxicity on non-malignant cells (hFB) than free naringenin, with an improved anticancer effect on malignant lung cells (A549) as an in vitro model of lung cancer.This work was supported by the Banco do Nordeste (grant FUNDECI/2016.0015), Conselho Nacional de
Desenvolvimento CientĂfico e TecnolĂłgico (CNPq), Fundação de Apoio Ă Pesquisa e Ă Inovação TecnolĂłgica do Estado de Sergipe (Fapitec) and Coordenação de Aperfeiçoamento de Pessoal de NĂvel Superior (CAPES). Eliana B. Souto would like to acknowledge the contributions from the Portuguese Science and Technology Foundation (FCT/MCT) and from European Funds (PRODER/COMPETE) for the projects M-ERA-NET/0004/2015-PAIRED and UIDB/04469/2020 (strategic fund), co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio
Susceptibility of neuron-like cells derived from bovine Whartonâs jelly to bovine herpesvirus type 5 infections
Background: Bovine herpesvirus type 5 (BoHV-5), frequently lethal in cattle, is associated with significant agricultural economic losses due to neurological disease. Cattle and rabbits are frequently used as models to study the biology and pathogenesis of BoHV-5 infection. In particular, neural invasion and proliferation are two of the factors important in BoHV-5 infection. The present study investigated the potential of bovine Wharton's jelly mesenchymal stromal cells (bWJ-MSCs) to differentiate into a neuronal phenotype and support robust BoHV-5 replication.Results: Upon inducing differentiation within a defined neuronal specific medium, most bWJ-MSCs acquired the distinctive neuronal morphological features and stained positively for the neuronal/glial markers MAP2 (neuronal microtubule associated protein 2), N200 (neurofilament 200), NT3 (neutrophin 3), tau and GFAP (glial fibrillary acidic protein). Expression of nestin, N200, beta-tubulin III (TuJI) and GFAP was further demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR). Following BoHV-5 inoculation, there were low rates of cell detachment, good cell viability at 96 h post-infection (p.i.), and small vesicles developed along neuronal branches. Levels of BoHV-5 antigens and DNA were associated with the peak in viral titres at 72 h p.i. BoHV-5 glycoprotein C mRNA expression was significantly correlated with production of progeny virus at 72 h p.i. (p < 0.05).Conclusion: The results demonstrated the ability of bWJ-MSCs to differentiate into a neuronal phenotype in vitro and support productive BoHV-5 replication. These findings constitute a remarkable contribution to the in vitro study of neurotropic viruses. This work may pave the way for bWJ-MSCs to be used as an alternative to animal models in the study of BoHV-5 biology
Susceptibility of neuron-like cells derived from bovine Whartonâs jelly to bovine <it>herpesvirus</it> type 5 infections
Abstract Background Bovine herpesvirus type 5 (BoHV-5), frequently lethal in cattle, is associated with significant agricultural economic losses due to neurological disease. Cattle and rabbits are frequently used as models to study the biology and pathogenesis of BoHV-5 infection. In particular, neural invasion and proliferation are two of the factors important in BoHV-5 infection. The present study investigated the potential of bovine Whartonâs jelly mesenchymal stromal cells (bWJ-MSCs) to differentiate into a neuronal phenotype and support robust BoHV-5 replication. Results Upon inducing differentiation within a defined neuronal specific medium, most bWJ-MSCs acquired the distinctive neuronal morphological features and stained positively for the neuronal/glial markers MAP2 (neuronal microtubule associated protein 2), N200 (neurofilament 200), NT3 (neutrophin 3), tau and GFAP (glial fibrillary acidic protein). Expression of nestin, N200, ÎČ-tubulin III (TuJI) and GFAP was further demonstrated by reverse transcriptase polymerase chain reaction (RT-PCR). Following BoHV-5 inoculation, there were low rates of cell detachment, good cell viability at 96 h post-infection (p.i.), and small vesicles developed along neuronal branches. Levels of BoHV-5 antigens and DNA were associated with the peak in viral titres at 72 h p.i. BoHV-5 glycoprotein C mRNA expression was significantly correlated with production of progeny virus at 72 h p.i. (pâ Conclusion The results demonstrated the ability of bWJ-MSCs to differentiate into a neuronal phenotype in vitro and support productive BoHV-5 replication. These findings constitute a remarkable contribution to the in vitro study of neurotropic viruses. This work may pave the way for bWJ-MSCs to be used as an alternative to animal models in the study of BoHV-5 biology.</p
Naringenin-functionalized multi-walled carbon nanotubes: A potential approach for site-specific remote-controlled anticancer delivery for the treatment of lung cancer cells
Multi-walled carbon nanotubes functionalized with naringenin have been developed as new drug carriers to improve the performance of lung cancer treatment. The nanocarrier was characterized by Transmission Electron Microscopy (TEM), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray photoelectron spectroscopy, Raman Spectroscopy, and Differential Scanning Calorimetry (DSC). Drug release rates were determined in vitro by the dialysis method. The cytotoxic profile was evaluated using the MTT assay, against a human skin cell line (hFB) as a model for normal cells, and against an adenocarcinomic human alveolar basal epithelial (A569) cell line as a lung cancer in vitro model. The results demonstrated that the functionalization of carbon nanotubes with naringenin occurred by non-covalent interactions. The release profiles demonstrated a pH-responsive behavior, showing a prolonged release in the tumor pH environment. The naringenin-functionalized carbon nanotubes showed lower cytotoxicity on non-malignant cells (hFB) than free naringenin, with an improved anticancer effect on malignant lung cells (A549) as an in vitro model of lung cancer
Direct detection of infectious bursal disease virus from clinical samples by in situ reverse transcriptase-linked polymerase chain reaction
The presence of the very virulent (vv) Brazilian strain of infectious bursal disease virus (IBDV) was determined in the bursa of Fabricius, thymus and liver of 2-week-old broilers from a flock with a higher than expected mortality. For this purpose, a direct in situ reverse transcriptase (RT)-linked polymerase chain reaction (PCR) method was developed using specific primers for vvIBDV. Unlabelled forward and reverse biotinylated oligonucleotides were used for RT-PCR in a one-step method and the respective products were revealed by a direct enzymatic reaction. The results were compared with those obtained by standard RT-PCR using general primers for IBDV and virus isolation. The virus isolation, RT-PCR and in situ RT-PCR revealed positive results on the bursa of Fabricius in 86%, 80% and 100%, respectively. The in situ RT-PCR detected vvIBDV in all tested thymus and liver samples, whereas the standard RT-PCR detected virus in 80% and 90% of the samples, respectively. After three consecutive passages on chicken embryonated eggs, IBDV was isolated from 64% of the thymus samples and 30% of the liver samples. In the present study, no classical or antigenic variants of IBDV were detected. The developed in situ RT-PCR assay was able to detect the very virulent strain of IBDV with a higher sensitivity than the conventional RT-PCR and virus isolation
Liposomal formulations of oxybutynin and resiniferatoxin for the treatment of urinary diseases: improvement of drug tolerance upon intravesical
The use of liposomes for drug release has demonstrated to be a promising therapeutic platform for biomedical applications. In this study, intravesical administration of OXI (1.5 mM) and RTX (100 nM) was used to compare histological changes caused in Wistar female rats by the drugs both unloaded and loaded in liposomes. After instillation of formulations by intravesical catheter, bladders were removed and histological analysis carried out at pre-determined time intervals over a period of 60 days. Urinalysis was performed to verify the presence of infection and of liposomes. Results showed that RTX caused a higher bladder damage, with inflammatory reaction that reached all bladder layers. After 60 days, RTX-treated group showed urothelial alterations, collagen replacement by fibrosis and also abdominal adherence, but not the OXI-treated group. At the end of the assay, the liposomal-treated groups showed a minimal inflammatory reaction and significantly increased bladder size. Moreover, urinalysis confirmed the presence of liposomes in rat urine. RTX promoted higher bladder damage than OXI. Intravesical administration of liposomal OXI or RTX formulations minimized inflammatory reaction, with an extended drug effect on bladders. After a single intravesical administration, liposomes were found in rat urine samples after 60 days.This research was funded by Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Fundação de Amparo Ă Pesquisa do Estado de Sergipe (FAPITEC), and Conselho Nacional de Desenvolvimento CientĂfico e TecnolĂłgico (CNPq). This work was also financed by the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) for the project UIDB/04469/2020 (strategic fund), from national funds, and co-financed by FEDER, under the Partnership Agreement PT2020.info:eu-repo/semantics/publishedVersio
Development of a New Formulation Based on In Situ Photopolymerized Polymer for the Treatment of Spinal Cord Injury
Spinal Cord Injury (SCI) promotes a cascade of inflammatory events that are responsible for neuronal death and glial scar formation at the site of the injury, hindering tissue neuroregeneration. Among the main approaches for the treatment of SCI, the use of biomaterials, especially gelatin methacryloyl (GelMA), has been proposed because it is biocompatible, has excellent mechanical properties, favoring cell adhesion and proliferation. In addition, it can act as a carrier of anti-inflammatory drugs, preventing the formation of glial scars. The present work presents the development and in situ application of a light-curing formulation based on GelMA containing a natural extract rich in anti-inflammatory, antioxidant and neuroprotective substances (hydroalcoholic extract of red propolisâHERP) in an experimental model of SCI in rats. The formulations were prepared and characterized by time of UV exposition, FTIR, swelling and degradation. The hydrogels containing 1 mg/mL of HERP were obtained by the exposure to UV radiation of 2 ÎŒL of the formulation for 60 s. The locomotor evaluation of the animals was performed by the scale (BBB) and demonstrated that after 3 and 7 days of the injury, the GelMA-HERP group (BBB = 5 and 7) presented greater recovery compared to the GelMA group (BBB = 4 and 5). Regarding the inflammatory process, using histomorphological techniques, there was an inflammation reduction in the groups treated with GelMA and GelMA-HERP, with decreases of cavitation in the injury site. Therefore, it is possible to conclude that the use of GelMA and GelMA-HERP hydrogel formulations is a promising strategy for the treatment of SCI when applied in situ, as soon as possible after the injury, improving the clinical and inflammatory conditions of the treated animals
Isolation and characterization of Whartonâs jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system
<p>Abstract</p> <p>Background</p> <p>The possibility for isolating bovine mesenchymal multipotent cells (MSCs) from fetal adnexa is an interesting prospect because of the potential for these cells to be used for biotechnological applications. Bone marrow and adipose tissue are the most common sources of MSCs derived from adult animals. However, little knowledge exists about the characteristics of these progenitors cells in the bovine species. Traditionally most cell cultures are developed in two dimensional (2D) environments. In mammalian tissue, cells connect not only to each other, but also support structures called the extracellular matrix (ECM). The three-dimensional (3D) cultures may play a potential role in cell biotechnology, especially in tissue therapy. In this study, bovine-derived umbilical cord Whartonâs jelly (UC-WJ) cells were isolated, characterized and maintained under 3D-free serum condition as an alternative of stem cell source for future cell banking.</p> <p>Results</p> <p>Bovine-derived UC-WJ cells, collected individually from 5 different umbilical cords sources, were successfully cultured under serum-free conditions and were capable to support 60 consecutive passages using commercial StemlineÂź mesenchymal stem cells expansion medium. Moreover, the UC-WJ cells were differentiated into osteocytes, chondrocytes, adipocytes and neural-like cells and cultured separately. Additionally, the genes that are considered important embryonic, POU5F1 and ITSN1, and mesenchymal cell markers, CD105<sup>+</sup>, CD29<sup>+</sup>, CD73<sup>+</sup> and CD90<sup>+</sup> in MSCs were also expressed in five bovine-derived UC-WJ cultures. Morphology of proliferating cells typically appeared fibroblast-like spindle shape presenting the same viability and number. These characteristics were not affected during passages. There were 60 chromosomes at the metaphase, with acrocentric morphology and intense telomerase activity. Moreover, the proliferative capacity of T cells in response to a mitogen stimulus was suppressed when bovine-derived UC-WJ cells was included in the culture which demonstrated the immunossupression profile typically observed among isolated mesenchymal cells from other species. After classified the UC-WJ cells as mesenchymal stromal phenotype the <it>in vitro</it> 3D cultures was performed using the AlgiMatrixÂź protocol. Based on the size of spheroids (283,07âÎŒmâ±â43,10âÎŒm) we found that three weeks of culture was the best period to growth the UC-WJ cells on 3D dimension. The initial cell density was measured and the best value was 1.5âĂâ10<sup>6</sup> cells/well.</p> <p>Conclusions</p> <p>We described for the first time the isolation and characterization of UC-WJ cells in a serum-free condition and maintenance of primitive mesenchymal phenotype. The culture was stable under 60 consecutive passages with no genetic abnormalities and proliferating ratios. Taken together all results, it was possible to demonstrate an easy way to isolate and culture of bovine-derived UC-WJ cells under 2D and 3D serum-free condition, from fetal adnexa with a great potential in cell therapy and biotechnology.</p